Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38136581

RESUMO

Molecular dynamic modeling and various experimental techniques, including multi-angle dynamic light scattering (MADLS), streaming potential, optical waveguide light spectroscopy (OWLS), quartz crystal microbalance with dissipation (QCM), and atomic force microscopy (AFM), were applied to determine the basic physicochemical parameters of fibroblast growth factor 21 in electrolyte solutions. The protein size and shape, cross-section area, dependence of the nominal charge on pH, and isoelectric point of 5.3 were acquired. These data enabled the interpretation of the adsorption kinetics of FGF 21 on bare and macrocation-covered silica investigated by OWLS and QCM. It was confirmed that the protein molecules irreversibly adsorbed on the latter substrate, forming layers with controlled coverage up to 0.8 mg m-2, while their adsorption on bare silica was much smaller. The viability of two cell lines, CHO-K1 and L-929, on both bare and macrocation/FGF 21-covered substrates was also determined. It is postulated that the acquired results can serve as useful reference systems for designing complexes that can extend the half-life of FGF 21 in its active state.


Assuntos
Fatores de Crescimento de Fibroblastos , Simulação de Dinâmica Molecular , Adsorção , Dióxido de Silício/química , Propriedades de Superfície
2.
Sci Rep ; 13(1): 17939, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864014

RESUMO

Biomaterial science has contributed tremendously to developing nanoscale materials for delivering biologically active compounds, enhancing protein stability, and enabling its therapeutic use. This paper presents a process of formation of polyelectrolyte multilayer (PEM) prepared by sequential adsorption of positively charged polydiallyldimethylammonium chloride (PDADMAC) and negatively charged heparin sodium salt (HP), from low polyelectrolyte concentration, on a solid substrate. PEM was further applied as a platform for the adsorption of a brain-derived growth factor (BDNF), which is a protein capable of regulating neuronal cell development. The multilayers containing BDNF were thoroughly characterized by electrokinetic (streaming potential measurements, SPM) and optical (optical waveguide lightmode spectroscopy, OWLS) techniques. It was found that BDNF was significantly adsorbed onto polyelectrolyte multilayers terminated by HP under physiological conditions. We further explore the effect of established PEMs in vitro on the neuroblastoma SH-SY5Y cell line. An enzyme-linked immunosorbent assay (ELISA) confirmed that BDNF was released from multilayers, and the use of the PEMs intensified its cellular uptake. Compared to the control, PEMs with adsorbed BDNF significantly reduced cell viability and mitochondrial membrane polarization to as low as 72% and 58%, respectively. HPLC analysis showed that both PDADMAC-terminated and HP-terminated multilayers have antioxidative properties as they almost by half decreased lipid peroxidation in SH-SY5Y cells. Finally, enhanced formation of spheroid-like, 3D structures was observed by light microscopy. We offer a well-characterized PEM with antioxidant properties acting as a BDNF carrier, stabilizing BDNF and making it more accessible to cells in an inhomogeneous, dynamic, and transient in vitro environment. Described multilayers can be utilized in future biomedical applications, such as boosting the effect of treatment by selective anticancer as adjuvant therapy, and in biomedical research for future development of more precise neurodegenerative disease models, as they enhance cellular 3D structure formation.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Heparina/farmacologia , Heparina/química , Polieletrólitos/química , Fator Neurotrófico Derivado do Encéfalo , Neuroblastoma/tratamento farmacológico
3.
Biomolecules ; 13(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759790

RESUMO

The adsorption of anti-Salmonella rabbit immunoglobulin (IgaR) on negatively charged polymer particles leading to the formation of immunolatex was studied using various techniques comprising atomic force microscopy (AFM) and laser Doppler velocimetry (LDV). Initially, the basic physicochemical properties of IgaR molecules and the particles, inter alia their electrophoretic mobilities, the zeta potentials and hydrodynamic diameters, were determined under different ionic strengths and pHs. Applying AFM, single immunoglobulin molecules adsorbed on mica were also imaged, which allowed to determine their size. The adsorption of the IgaR molecules on the particles leading to changes in their electrophoretic mobility was monitored in situ using the LDV method. The obtained results were interpreted applying a general electrokinetic model which yielded quantitative information about the molecule coverage on the particles. The obtained immunolatex was thoroughly characterized with respect to its acid-base properties and its stability upon storage. Notably, the developed procedure demonstrated better efficiency compared to commercially applied methods, characterized by a higher immunoglobulin consumption.


Assuntos
Hidrodinâmica , Polímeros , Animais , Coelhos , Adsorção , Fluxometria por Laser-Doppler , Microscopia de Força Atômica , Salmonella
4.
Int J Biol Macromol ; 247: 125701, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429346

RESUMO

Controlling cellular adhesion is a critical step in the development of biomaterials, and in cell- based biosensing assays. Usually, the adhesivity of cells is tuned by an appropriate biocompatible layer. Here, synthetic poly(diallyldimethylammonium chloride) (PDADMAC), natural chitosan, and heparin (existing in an extracellular matrix) were selected to assembly PDADMAC/heparin and chitosan/heparin films. The physicochemical properties of macroion multilayers were determined by streaming potential measurements (SPM), quartz crystal microbalance (QCM-D), and optical waveguide lightmode spectroscopy (OWLS). The topography of the wet films was imaged using atomic force microscopy (AFM). The adhesion of preosteoblastic cell line MC3T3-E1 on those well-characterized polysaccharide-based multilayers was evaluated using a resonant waveguide grating (RWG) based optical biosensor and digital holographic microscopy. The latter method was engaged to investigate long-term cellular behavior on the fabricated multilayers. (PDADMAC/heparin) films were proved to be the most effective in inducing cellular adhesion. The cell attachment to chitosan/heparin-based multilayers was negligible. It was found that efficient adhesion of the cells occurs onto homogeneous and rigid multilayers (PDADMAC/heparin), whereas the macroion films forming "sponge-like" structures (chitosan/heparin) are less effective, and could be employed when reduced adhesion is needed. Polysaccharide-based multilayers can be considered versatile systems for medical applications. One can postulate that the presented results are relevant not only for modeling studies but also for applied research.


Assuntos
Técnicas Biossensoriais , Quitosana , Quitosana/química , Polissacarídeos/farmacologia , Heparina/farmacologia , Heparina/química , Adesão Celular , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 15(28): 34172-34180, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37413693

RESUMO

Vimentin, a protein that builds part of the cytoskeleton and is involved in many aspects of cellular function, was recently identified as a cell surface attachment site for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The present study investigated the physicochemical nature of the binding between the SARS-CoV-2 S1 glycoprotein receptor binding domain (S1 RBD) and human vimentin using atomic force microscopy and a quartz crystal microbalance. The molecular interactions of S1 RBD and vimentin proteins were quantified using vimentin monolayers attached to the cleaved mica or a gold microbalance sensor as well as in its native extracellular form present on the live cell surface. The presence of specific interactions between vimentin and S1 RBD was also confirmed using in silico studies. This work provides new evidence that cell-surface vimentin (CSV) functions as a site for SARS-CoV-2 virus attachment and is involved in the pathogenesis of Covid-19, providing a potential target for therapeutic countermeasures.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vimentina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
6.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293231

RESUMO

The adsorption kinetics of the SARS-CoV-2 spike protein subunit with the receptor binding domain at abiotic surfaces was investigated. A combination of sensitive methods was used such as atomic force microscopy yielding a molecular resolution, a quartz microbalance, and optical waveguide lightmode spectroscopy. The two latter methods yielded in situ information about the protein adsorption kinetics under flow conditions. It was established that at pH 3.5-4 the protein adsorbed on mica and silica surfaces in the form of compact quasi-spherical aggregates with an average size of 14 nm. The maximum coverage of the layers was equal to 3 and 1 mg m-2 at pH 4 and 7.4, respectively. The experimental data were successfully interpreted in terms of theoretical results derived from modeling. The experiments performed for flat substrates were complemented by investigations of the protein corona formation at polymer particles carried out using in situ laser Doppler velocimetry technique. In this way, the zeta potential of the protein layers was acquired as a function of the coverage. Applying the electrokinetic model, these primary data were converted to the dependence of the subunit zeta potential on pH. It was shown that a complete acid-base characteristic of the layer can be acquired only using nanomolar quantities of the protein.


Assuntos
COVID-19 , Coroa de Proteína , Humanos , Adsorção , Glicoproteína da Espícula de Coronavírus , Polímeros , Propriedades de Superfície , Quartzo , Concentração de Íons de Hidrogênio , SARS-CoV-2 , Dióxido de Silício/química , Proteínas
7.
Biomacromolecules ; 23(8): 3308-3317, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35829774

RESUMO

Adsorption kinetics of human vimentin on negatively charged substrates (mica, silica, and polymer particles) was analyzed using atomic force microscopy (AFM), quartz microbalance (QCM), and the laser doppler velocimetry (LDV) method. AFM studies realized under diffusion conditions proved that the adsorbed protein layer mainly consisted of aggregates in the form of compact tetramers and hexamers of a size equal to 11-12 nm. These results were consistent with vimentin adsorption kinetics under flow conditions investigated by QCM. It was established that vimentin aggregates efficiently adsorbed on the negatively charged silica sensor at pH 3.5 and 7.4, forming compact layers with the coverage reaching 3.5 mg m-2. Additionally, the formation of the vimentin corona at polymer particles was examined using the LDV method and interpreted in terms of the electrokinetic model. This allowed us to determine the zeta potential of the corona as a function of pH and the electrokinetic charge of aggregates, which was equal to -0.7 e nm-2 at pH 7.4 in a 10 mM NaCl solution. The anomalous adsorption of aggregates exhibiting an average negative charge on the negatively charged substrates was interpreted as a result of a heterogeneous charge distribution. These investigations confirmed that it is feasible to deposit stable vimentin layers both at planar substrates and at carrier particles with well-controlled coverage and zeta potential. They can be used for investigations of vimentin interactions with various ligands including receptors of the innate immune system, immunoglobulins, bacterial virulence factors, and spike proteins of viruses.


Assuntos
Dióxido de Silício , Adsorção , Humanos , Cinética , Propriedades de Superfície , Vimentina
8.
Carbohydr Polym ; 292: 119676, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725171

RESUMO

Molecular dynamics modeling was applied to predict chitosan molecule conformations, the contour length, the gyration radius, the effective cross-section and the density in electrolyte solutions. Using various experimental techniques the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility of molecules were determined. This allowed to calculate the zeta potential, the electrokinetic charge and the effective ionization degree of the chitosan molecule as a function of pH and the temperature. The chitosan solution density and zero shear dynamic viscosity were also measured, which enabled to determine the intrinsic viscosity increment. The experimental results were quantitatively interpreted in terms of the slender body hydrodynamics exploiting molecule characteristics derived from the modeling. It is also confirmed that this approach can be successfully used for a proper interpretation of previous literature data obtained under various physicochemical conditions.


Assuntos
Quitosana , Hidrodinâmica , Eletrólitos/química , Simulação de Dinâmica Molecular , Soluções , Viscosidade
9.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614134

RESUMO

Physicochemical properties of immunolatex, prepared by incubation of negatively charged polystyrene microparticles with polyclonal rabbit IgGs, were determined by a variety of experimental techniques. These comprised dynamic light scattering (DLS), laser Doppler velocimetry (LDV) and atomic force microscopy (AFM). The particle diffusion coefficient, the hydrodynamic diameter, the electrophoretic mobility, the zeta potential and the suspension stability were determined as a function of pH for different ionic strengths. The deposition of the immunolatex on bare and polyallylamine (PAH) functionalized mica was investigated using the microfluidic oblique impinging-jet cell, with an in situ, real-time image analysis module. The particle deposition kinetics was acquired by a direct particle enumeration procedure. The measurements enabled us to determine the range of pH where the specific deposition of the immunolatex on these substrates was absent. We argue that the obtained results have practical significance for conducting efficient flow immunoassays governed by specific antigen/antibody interactions.


Assuntos
Aglutinação , Poliestirenos , Animais , Coelhos , Cinética , Difusão Dinâmica da Luz , Microscopia de Força Atômica , Poliestirenos/química , Propriedades de Superfície
10.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884047

RESUMO

In many countries, work is being conducted to introduce Weigh-In-Motion (WIM) systems intended for continuous and automatic control of gross vehicle weight. Such systems are also called WIM systems for direct enforcement (e-WIM). The achievement of introducing e-WIM systems is conditional on ensuring constant, known, and high-accuracy dynamic weighing of vehicles. WIM systems weigh moving vehicles, and on this basis, they estimate static parameters, i.e., static axle load and gross vehicle weight. The design and principle of operation of WIM systems result in their high sensitivity to many disturbing factors, including climatic factors. As a result, weighing accuracy fluctuates during system operation, even in the short term. The article presents practical aspects related to the identification of factors disturbing measurement in WIM systems as well as methods of controlling, improving and stabilizing the accuracy of weighing results. Achieving constant high accuracy in weighing vehicles in WIM systems is a prerequisite for their use in the direct enforcement mode. The research results presented in this paper are a step towards this goal.


Assuntos
Movimento (Física) , Coleta de Dados
11.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684880

RESUMO

The deposition kinetics of polymer particles with fibrinogen molecule coronas at bare and poly-L-lysine (PLL) modified mica was studied using the microfluid impinging-jet cell. Basic physicochemical characteristics of fibrinogen and the particles were acquired using dynamic light scattering and the electrophoretic mobility methods, whereas the zeta potential of the substrates was determined using streaming potential measurements. Subsequently, an efficient method for the preparation of the particles with coronas, characterized by a controlled fibrinogen coverage, was developed. This enabled us to carry out measurements, which confirmed that the deposition kinetics of the particles at mica vanished at pH above 5. In contrast, the particle deposition of PLL modified mica was at maximum for pH above 5. It was shown that the deposition kinetics could be adequately analyzed in terms of the mean-field approach, analogously to the ordinary colloid particle behavior. This contrasts the fibrinogen molecule behavior, which efficiently adsorbs at negatively charged substrates for the entire range pHs up to 9.7. These results have practical significance for conducting label-free immunoassays governed by the specific antigen/antibody interactions.


Assuntos
Silicatos de Alumínio/química , Coloides/química , Fibrinogênio/química , Fibrinogênio/metabolismo , Polímeros/química , Silicatos de Alumínio/metabolismo , Coloides/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Polímeros/metabolismo , Especificidade por Substrato , Propriedades de Superfície
12.
J Nanobiotechnology ; 19(1): 258, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454520

RESUMO

BACKGROUND: The rational chemical design of nanoparticles can be readily controlled and optimized by quantitatively studying protein adsorption at variously charged polymer carriers, determining their fate in biological fluids. We manufactured brain-derived neurotrophic factor (BDNF) -based electrostatic nanocomplexes with a different type of dendrimer core (anionic or cationic), encapsulated or not in polyethylene glycol (PEG), and studied their physicochemical properties and behavior in a biological setting. We investigated whether the electrokinetic charge of dendrimer core influences BDNF loading and desorption from the nanoparticle and serves as a determinant of nanoparticles' behavior in in vitro setting, influencing mitochondrial dysfunction, lipid peroxidation, and general nanoparticles' cellular toxicity. RESULTS: We found that the electrokinetic charge of the dendrimer core influences nanoparticles in terms of BDNF release profile from their surfaces and their effect on cell viability, mitochondrial membrane potential, cell phenotype, and induction of oxidative stress. The electrostatic interaction of positively charged core of nanoparticles with cell membranes increases their cytotoxicity, as well as serious phenotype alterations compared to negatively charged nanoparticles core in neuron-like differentiated human neuroblastoma cells. Moreover, PEG adsorption at nanoparticles with negatively charged core presents a distinct decrease in metabolic cell activity. On the contrary, charge neutralization due to PEG adsorption on the surface of nanoparticles with positively charged core does not reduce their cytotoxicity, makes them less biocompatible with differentiated cells, and presumably shows non-specific toxicity. CONCLUSIONS: The surface charge transformation after adsorption of protein or polyelectrolyte during nanocarriers formulation has an important role not only in designing nanomaterials with potent neuroprotective and neuroregenerative properties but also in applying them in a cellular environment.


Assuntos
Nanopartículas/química , Nanopartículas/toxicidade , Estresse Oxidativo , Proteínas/química , Adsorção , Humanos , Íons , Oxidopamina , Polietilenoglicóis/química , Polímeros , Eletricidade Estática , Propriedades de Superfície
13.
J Phys Chem B ; 125(28): 7797-7808, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34253019

RESUMO

The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Carragenina , Cinética , Propriedades de Superfície
14.
Artigo em Inglês | MEDLINE | ID: mdl-34066515

RESUMO

Adsorption kinetics of myoglobin on silica was investigated using the quartz crystal microbalance (QCM) and the optical waveguide light-mode spectroscopy (OWLS). Measurements were carried out for the NaCl concentration of 0.01 M and 0.15 M. A quantitative analysis of the kinetic adsorption and desorption runs acquired from QCM allowed to determine the maximum coverage of irreversibly bound myoglobin molecules. At a pH of 3.5-4 this was equal to 0.60 mg m-2 and 1.3 mg m-2 for a NaCl concentration of 0.01 M and 0.15 M, respectively, which agrees with the OWLS measurements. The latter value corresponds to the closely packed monolayer of molecules predicted from the random sequential adsorption approach. The fraction of reversibly bound protein molecules and their biding energy were also determined. It is observed that at larger pHs, the myoglobin adsorption kinetics was much slower. This behavior was attributed to the vanishing net charge that decreased the binding energy of molecules with the substrate. These results can be exploited to develop procedures for preparing myoglobin layers at silica substrates of well-controlled coverage useful for biosensing purposes.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício , Adsorção , Concentração de Íons de Hidrogênio , Mioglobina , Análise Espectral , Propriedades de Superfície
16.
J Nanobiotechnology ; 18(1): 120, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867843

RESUMO

Brain-derived neurotrophic factor (BDNF) is essential for the development and function of human neurons, therefore it is a promising target for neurodegenerative disorders treatment. Here, we studied BDNF-based electrostatic complex with dendrimer nanoparticles encapsulated in polyethylene glycol (PEG) in neurotoxin-treated, differentiated neuroblastoma SH-SY5Y cells, a model of neurodegenerative mechanisms. PEG layer was adsorbed at dendrimer-protein core nanoparticles to decrease their cellular uptake and to reduce BDNF-other proteins interactions for a prolonged time. Cytotoxicity and confocal microscopy analysis revealed PEG-ylated BDNF-dendrimer nanoparticles can be used for continuous neurotrophic factor delivery to the neurotoxin-treated cells over 24 h without toxic effect. We offer a reliable electrostatic route for efficient encapsulation and controlled transport of fragile therapeutic proteins without any covalent cross-linker; this could be considered as a safe drug delivery system. Understanding the polyvalent BDNF interactions with dendrimer core nanoparticles offers new possibilities for design of well-ordered protein drug delivery systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dendrímeros/química , Portadores de Fármacos , Nanopartículas/química , Neuroblastoma/metabolismo , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Neurotoxinas/efeitos adversos , Polietilenoglicóis/química , Eletricidade Estática
17.
Langmuir ; 35(35): 11275-11284, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31394033

RESUMO

The adsorption kinetics of human serum fibrinogen at silica substrates was studied using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance (QCM) techniques. Measurements were performed at pH 3.5, 4, and 7.4 for various ionic strengths. The experimental data were interpreted in terms of a hybrid random sequential adsorption model. This allowed the mass transfer rate coefficient for the OWLS cell and maximum coverages to be determined at various pHs. The appearance of different, pH-dependent mechanisms of fibrinogen adsorption on silica substrates was confirmed. At pH 3.5 the molecules mostly adsorb in the side-on orientation that produces a low maximum coverage of ca. 1 mg m-2. At this pH, the kinetics derived from the OWLS measurements agree with those theoretically predicted using the convective-diffusion theory. In consequence, a comparison of the OWLS and QCM results allows the water factor and the dynamic hydration of fibrinogen molecules to be determined. At pH 7.4, the OWLS method gives inaccurate kinetic data for the low coverage range. However, the maximum coverage that was equal to ca. 4 mg m-2 agrees with the QCM results and with previous literature results. It is postulated that the limited accuracy of the OWLS method for lower coverage stems from a heterogeneous structure of fibrinogen monolayers, which consist of side-on and end-on adsorbed molecules. One can expect that the results acquired in this work allow development of a robust procedure for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation, which can be exploited for efficient immunosensing purposes.


Assuntos
Fibrinogênio/química , Dióxido de Silício/química , Adsorção , Fibrinogênio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Técnicas de Microbalança de Cristal de Quartzo , Análise Espectral , Propriedades de Superfície
18.
Langmuir ; 35(7): 2639-2648, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30673280

RESUMO

Adsorption kinetics of human serum albumin (HSA) on silica substrates was studied using optical waveguide lightmode spectroscopy (OWLS) and quartz microbalance (QCM) techniques. Measurements were performed at pH 3.5, 5.6, and 7.4 for various bulk suspension concentrations and ionic strengths. The diffusion coefficient measurements showed that for pH 3.5 the HSA molecules are stable for NaCl concentrations from 10-3 to 0.15 M. This allowed us to precisely determine the mass transfer rate coefficients for the OWLS and QCM cells. The experimental data were adequately interpreted in terms of a hybrid random sequential adsorption model. The OWLS maximum coverage of HSA at pH 3.5, which is equal to 1.3 mg m-2, agrees with the QCM result and with previous results derived from streaming potential measurements. Thus, the results obtained at pH 3.5 served as reference data for the analysis of adsorption kinetics at higher pHs. In this way, it was confirmed that the adsorption kinetics of HSA molecules at pH 5.6 and 7.4 was considerably slower than at pH 3.5. This effect was attributed to aggregation of HSA solutions and interpreted in terms of a theoretical model combining the Smoluchowski aggregation theory with the convective diffusion mass transfer theory. New analytical equations were derived that can be used for the interpretation of other protein adsorption from unstable solutions.


Assuntos
Albumina Sérica Humana/química , Dióxido de Silício/química , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Cinética , Estabilidade Proteica/efeitos dos fármacos , Técnicas de Microbalança de Cristal de Quartzo , Cloreto de Sódio/química , Análise Espectral
19.
J Colloid Interface Sci ; 513: 170-179, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29153710

RESUMO

The kinetics of negatively charged silver nanoparticle (AgNP) deposition on the supporting fibrinogen monolayers of well-characterized coverage was determined by the atomic force microscopy (AFM). The kinetics was quantitatively interpreted in terms of the hybrid random sequential adsorption model. The electrokinetic properties of the fibrinogen monolayers and fibrinogen/AgNP bilayers were thoroughly characterized in situ by the streaming potential measurements. These results were interpreted in terms of the general electrokinetic model expressing the particle coverage in terms of the zeta potential of the bilayers. This allowed one to determine the adsorption constants and the binding energy of AgNPs, which was equal to -20.8 and -21.3 kT for pH 3.5 and 7.4, respectively. These results confirmed the end-on mechanism of fibrinogen adsorption and the presence of positively charged spots at its molecule at pH 7.4 where it exhibits an average negative charge. Besides significance to basic science, the obtained results can be exploited for developing a procedure for producing AgNP monolayers of well-defined coverage and controlled particle release profile.

20.
Langmuir ; 33(38): 9916-9925, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28841326

RESUMO

An efficient method was developed enabling the synthesis of spheroidal polymer microparticles. Thorough physicochemical characteristics of the particles were acquired comprising the size, shape, electrophoretic mobility, and the diffusion coefficient. The particles were monodisperse, and their shape was well-fitted by prolate spheroids having the axis ratio equal to 4.17. Knowing the diffusion coefficient, their hydrodynamic diameter of 449 nm was calculated, which matched the value derived from Brenner's analytical expression. Particle deposition kinetics on mica and silicon/silica substrates, modified by poly(allylamine hydrochloride) (PAH) adsorption, was studied by optical microscopy and AFM imaging. The validity of the random sequential adsorption model was confirmed. Additionally, monolayers of the particles on these substrates were thoroughly characterized in situ by the streaming potential measurements for different ionic strengths. These measurements confirmed that the ζ potential change with the spheroidal particle coverage is less abrupt than for spheres and agrees with theoretical predictions. Exploiting these results, a useful analytical expression was derived that allows one to calculate the spheroidal particle coverage in situ via the streaming potential measurements. This expression, especially accurate for low coverage range, can be used for a quantitative interpretation of adsorption and desorption kinetics of anisotropic macromolecules, e.g., proteins on solid substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...