Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 90(11): 1188-95, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18944419

RESUMO

ABSTRACT The temporal and spatial patterns of Phytophthora infestans population genetic structure were analyzed in the Del Fuerte Valley, Sinaloa, Mexico, during the crop seasons of 1994 to 1995, 1995 to 1996, and 1996 to 1997 by geographical information systems. Isolates of P. infestans were obtained from infected tissue of tomato and potato collected from two areas: (i) where both potatoes and tomatoes are grown, and (ii) where only tomatoes are grown. The isolates were characterized by mating type, allozymes at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism (RFLP) fingerprint with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. The results suggest presence of an asexual population with frequent immigrations from outside the valley. There was a shift of mating type in the population from predominantly A2 to completely A1 in this period. The co-occurrence of mating types was restricted to very few fields in the area around Los Mochis where tomato and potato crops are grown. Genotype variation based on allozyme analysis and mating type was low with only one genotype affecting both crops each year. The genotypes affecting both crops were the only genotypes highly aggressive to both tomato and potato in laboratory aggressiveness tests and the only genotypes widespread on both the tomato and potato crops in the valley each year. These predominant genotypes were highly resistant to the fungicide metalaxyl. Data on metalaxyl sensitivity indicate that allozyme analysis can discriminate between sensitive and resistant isolates in the Del Fuerte Valley. RFLP analysis with the probe RG57 gives further discrimination of genotypes within an allozyme genotype. In the 1995 to 1996 season, four different RFLP genotypes were found within an allozyme genotype. However, there were five other dilocus allozyme genotypes that could not be further split by RFLP analysis in 1995 to 1996 and 1996 to 1997 seasons. Spatial analysis of genotypes suggests that each season individual fields near Los Mochis became infected with one or more genotypes, but only a single genotype, aggressive on both potato and tomato, occurred south and east to the Guasave area.

2.
Plant Cell Rep ; 14(12): 758-62, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24186707

RESUMO

To explore the effectiveness of insect derived protease inhibitors in protecting plants against insect feeding, anti-trypsin, anti-chymotrypsin and anti-elastase protease inhibitor (PI) genes from Manduca sexta L. were expressed in transgenic cotton (Gossypium hirsutum L.). From 198 independent transformants, 35 elite lines were further analyzed. Under the control of the 35S promoter of CaMV, PI accumulated to approximately 0.1% of total protein, depending on the tissue analyzed. Using cell-flow cytometry, DNA content/ nuclei of transgenic and non-transformed cotton were identical. On cotton plants expressing PIs, fecundity of Bemisia tabaci (Genn.), the sweetpotato whitefly, was reduced compared to controls. Expression of these protease inhibitors may reduce the developmental rate of B. tabaci and other insects, and provide a strategy for cotton protection.

3.
Plant Cell Rep ; 14(1): 31-6, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24194223

RESUMO

As one approach to alleviating the need for insecticide spraying, our objective is to express protein insecticides in transgenic alfalfa. To initiate these studies, a cDNA encoding the protease inhibitor (PI) anti-elastase from Manduca sexta was placed under the control of the CaMV 35S promoter, inserted into pAN 70, and transferred into leaf and petiole sections of alfalfa (Medicago sativa L.) using Agrobacterium tumefaciens mediated gene transfer. Transformation rates were 10% of all explants exposed to Agrobacterium. More than 1000 transgenic plants containing the PI have been recovered. Transgenic plants were initially identified when leaf explants from the regenerated plants formed callus in the presence of 50 µg/ml kanamycin, and subsequently the presence of the PI gene was confirmed by southern analysis. The 35S promoter-PI fusion produced up to 0.125% of total protein as PI protein in leaves, roots, and flowers. Progeny analysis demonstrated Mendelian segregation of the NPTII gene (observed as kanamycin resistance) and the PI (confirmed by southern analysis). Accumulation of the anti-elastase PI insecticide in transgenic alfalfa reduced the onset of thrip predation, suggesting that this methodology can establish insect resistance within this agronomically important legume.

4.
J Biol Chem ; 264(7): 3662-5, 1989 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-2917968

RESUMO

Import of the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase into the chloroplast has been proposed to involve two proteolytic cleavages which convert the 20-kDa precursor (pSSU) into the mature 14-kDa subunit (SSU) via an 18-kDa intermediate. A deletion mutant (PSd48/57) of pSSU which lacks 10 amino acids in a conserved region in the carboxyl-terminal portion of the transit peptide is converted into a series of 16-18-kDa polypeptides in addition to the mature 14-kDa SSU when imported into isolated pea chloroplasts. We examined import and processing of this mutant pSSU to determine whether the 16-18-kDa SSUs undergo further maturation in the chloroplast stroma to yield 14-kDa SSU. The ratio of incorrectly processed to 14-kDa SSU is stable up to 60 min following import. This indicates that processing of PSd48/57 involves a single proteolytic cleavage which occurs during or immediately following transit across the chloroplast envelope. The carboxyl-terminal portion of the transit peptide confers either sequence specificity for the processing protease or provides a three-dimensional structure necessary for consistent cleavage at the mature amino terminus of SSU. Incorrectly processed SSUs were incorporated into the holoenzyme demonstrating that removal of the entire transit sequence is not necessary for assembly of the holoenzyme.


Assuntos
Cloroplastos/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Análise Mutacional de DNA , Substâncias Macromoleculares , Dados de Sequência Molecular , Peso Molecular , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 86(4): 1198-202, 1989 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2493152

RESUMO

The mature small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in higher plants contains a highly conserved sequence of 16 amino acids that is absent in the SSUs of cyanobacteria. To determine whether this region of the SSU of higher plants has a specific function, portions of the SSU genes (rbcS) of pea (Pisum sativum) and the cyanobacterium Anacystis nidulans were fused to create chimeric genes that either lacked or contained the coding sequence for the 16 conserved amino acids. Precursor proteins synthesized in vitro from the chimeric genes were incubated with isolated pea chloroplasts to assay import and assembly into the holoenzyme. Fusion proteins lacking the 16-amino acid sequence were imported and processed but failed to assemble with endogenous large subunit. Addition of the region from a pea rbcS containing the 16 amino acids to the rbcS of Anacystis enabled the imported SSU fusion protein to assemble with pea large subunit. This 16-amino acid sequence is encoded by a separate exon in certain rbcS genes of higher plants. We propose that the conserved 16-amino acid sequence constitutes a domain acquired to facilitate assembly of the eukaryotic holoenzyme.


Assuntos
Cianobactérias/genética , Genes , Plantas/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Aminoácidos , Quimera , Cloroplastos/enzimologia , Cianobactérias/enzimologia , Éxons , Dados de Sequência Molecular , Plantas/enzimologia , Processamento de Proteína Pós-Traducional , Ribulose-Bifosfato Carboxilase/biossíntese
6.
Proc Natl Acad Sci U S A ; 86(3): 886-90, 1989 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2915984

RESUMO

We studied transport and binding to intact chloroplasts of 10 mutants in three regions of the transit peptide of a precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase [3-phospho-D-glycerate carboxy-lyase (transphosphorylating), E.C.4.1.1.39]. Transport was assayed in a reconstituted system using isolated pea chloroplasts and radioactively labeled precursor. Binding to the chloroplast envelope was assayed in a similar manner using chloroplasts pretreated with nigericin. Most mutants showed a dramatically decreased capacity of binding, although some of them transported relatively well. The accumulation of the mutant proteins inside the chloroplast as a function of time was examined. Although the authentic small subunit precursor was imported rapidly, uptake of most mutant precursors was considerably slower and continued until the last time point examined. In terms of assigning functions to individual regions, we found that at least the middle region and parts of the amino and the carboxyl termini of the transit peptide are more important for receptor binding than for translocation. A two-step processing mechanism has been postulated for the maturation of the small subunit precursor. This model predicts the occurrence of processing intermediates. When precursors carrying carboxyl-terminal deletions were presented to the chloroplast, no defined intermediates could be detected. Instead, a number of proteins, probably resulting from aberrant processing, accumulated simultaneously inside the chloroplasts.


Assuntos
Cloroplastos/enzimologia , Mutação , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/genética , Sequência de Aminoácidos , Fabaceae/enzimologia , Fabaceae/genética , Cinética , Dados de Sequência Molecular , Plantas/genética , Plantas Medicinais , Processamento de Proteína Pós-Traducional , Ribulose-Bifosfato Carboxilase/metabolismo
7.
J Biol Chem ; 263(2): 617-9, 1988 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-3335516

RESUMO

Chloroplast import and processing of two precursor proteins with mutations in the carboxyl-terminal region of the transit peptide were examined in vitro. Deletion mutations were introduced into the 57-amino acid transit peptide of a chloroplast protein, the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, from pea. A mutant, PSd48/57, in which nine carboxyl-terminal amino acids of the transit peptide had been deleted, was imported and processed to a series of 13- to 18-kDa polypeptides including the 14-kDa mature small subunit. In contrast, processing of a mutant, PSd45/57, in which an additional three amino acids had been removed, resulted in a series of polypeptides which did not include the mature small subunit. Whereas PSd48/57 was imported as efficiently as the wild-type precursor, import of PSd45/57 was only 25% as efficient as that of the authentic precursor. The mutant precursor proteins PSd48/57 and PSd45/57 are distinguished by a three-amino acid sequence, Ile-Thr-Ser, located in the carboxyl-terminal region of the transit peptide. We show that all or part of this sequence is required for correct processing.


Assuntos
Precursores Enzimáticos/metabolismo , Fragmentos de Peptídeos/metabolismo , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Deleção Cromossômica , Precursores Enzimáticos/genética , Fabaceae , Substâncias Macromoleculares , Peso Molecular , Mutação , Plantas Medicinais
8.
Mol Gen Genet ; 209(1): 116-21, 1987 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17186620

RESUMO

Deletion mutations, 3-19 amino acids in size, were introduced into the transit peptide (57 amino acids) of a small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase from pea. Transport of the authentic small subunit precursor (pSSU) and of the mutant pSSUs by isolated chloroplasts of pea was examined. We show that the transit peptide contains two different, separated functional regions. A deletion mutation in the central region of the transit peptide, a region purported to be important for function, barely affected transport. Changes in the amino-terminal region of the transit peptide appeared normal. A deletion mutation at the carboxy-terminus of the transit peptide interfered with both transport and processing. From the aberrant processing we suggest that pSSU is matured in more than one step, and that the maturation signal is located within the carboxy-terminal 16 amino acids. The methionine residue at the evolutionarily conserved cleavage site (cysteine-methionine) between the transit peptide and the mature protein is not essential processing.


Assuntos
Cloroplastos/genética , Proteínas de Plantas/genética , Proteínas de Membrana/metabolismo , Mutação , Pisum sativum/genética , Proteínas de Plantas/metabolismo , Transporte Proteico/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...