Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 10(1): 38, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32100120

RESUMO

Methylotrophic yeasts such as Komagataella phaffii (syn. Pichia pastoris, Pp), Hansenula polymorpha (Hp), Candida boidinii (Cb) and Pichia methanolica (Pm) are widely used protein production platforms. Typically, strong, tightly regulated promoters of genes coding for their methanol utilization (MUT) pathways are used to drive heterologous gene expression. Despite highly similar open reading frames in the MUT pathways of the four yeasts, the regulation of the respective promoters varies strongly between species. While most endogenous Pp MUT promoters remain tightly repressed after depletion of a repressing carbon, Hp, Cb and Pm MUT promoters are derepressed to up to 70% of methanol induced levels, enabling methanol free production processes in their respective host background. Here, we have tested a series of orthologous promoters from Hp, Cb and Pm in Pp. Unexpectedly, when induced with methanol, the promoter of the HpMOX gene reached very similar expression levels as the strong methanol, inducible, and most frequently used promoter of the Pp alcohol oxidase 1 gene (PPpAOX1). The HpFMD promoter even surpassed PPpAOX1 up to three-fold, when induced with methanol, and reached under methanol-free/derepressed conditions similar expression as the methanol induced PPpAOX1. These results demonstrate that orthologous promoters from related yeast species can give access to otherwise unobtainable regulatory profiles and may even considerably surpass endogenous promoters in P. pastoris.

2.
ACS Synth Biol ; 5(2): 172-86, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26592304

RESUMO

The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth. Ideally, the promoter sequences used should not be identical to avoid loss by recombination. The methylotrophic yeast Pichia pastoris is a commonly used protein production host, and single genes have been expressed at high levels using the methanol-inducible, strong, and tightly regulated promoter of the alcohol oxidase 1 gene (PAOX1). Here, we have studied the regulation of the P. pastoris methanol utilization (MUT) pathway to identify a useful set of promoters that (i) allow high coexpression and (ii) differ in DNA sequence to increase genetic stability. We noticed a pronounced involvement of the pentose phosphate pathway (PPP) and genes involved in the defense of reactive oxygen species (ROS), providing strong promoters that, in part, even outperform PAOX1 and offer novel regulatory profiles. We have applied these tightly regulated promoters together with novel terminators as useful tools for the expression of a heterologous biosynthetic pathway. With the synthetic biology toolbox presented here, P. pastoris is now equipped with one of the largest sets of strong and co-regulated promoters of any microbe, moving it from a protein production host to a general industrial biotechnology host.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metanol/farmacocinética , Pichia , Regiões Promotoras Genéticas , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...