Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 58: 218-223, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29306002

RESUMO

Bovine viral diarrhea virus (BVDV) is a single stranded RNA virus in the family Flaviviridae that causes a form of persistent infection. If a fetus is infected in utero during the first 120days of gestation the resulting calf will be immunotolerant to the infecting strain and maintain the virus for life. These animals are epidemiologically important in maintaining BVDV on farms, but also present a unique opportunity to study quasispecies in vivo in the absence of significant selection by the host adaptive immune response. We used deep sequencing and novel analytical methods to characterize the viral populations within the mesenteric lymph nodes of 10 persistently infected animals. Our results indicate that the pattern of variability across the viral genome from animal to animal is very consistent within BVDV subgenotypes. However, the individual mutations that constitute this variation are not necessarily the same in each animal. Even in the absence of significant immune selection the structural genes of BVDV vary more extensively than the non-structural genes. These findings could be useful for future vaccine design against BVDV as well as for measuring and understanding patterns of variation in other ssRNA viruses, especially those that belong to the family Flaviviridae.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina/genética , Genoma Viral , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Biologia Computacional/métodos , Vírus da Diarreia Viral Bovina/imunologia , Evolução Molecular , RNA Viral , Análise de Sequência de RNA , Proteínas Virais/genética
2.
Appl Environ Microbiol ; 77(21): 7620-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908635

RESUMO

Establishing the risk of human infection is one of the goals of public health. For bacterial pathogens, the virulence and zoonotic potential can often be related to their host source. Escherichia coli bacteria are common contaminants of water associated with human recreation and consumption, and many strains are pathogenic. In this study, we analyzed three promoter-containing intergenic regions from 284 diverse E. coli isolates in an attempt to identify molecular signatures associated with specific host types. Promoter sequences controlling production of curli fimbriae, flagella, and nutrient import yielded a phylogenetic tree with isolates clustered by established phylogenetic grouping (A, B1, B2, and D) but not by host source. Virulence genes were more prevalent in groups B2 and D isolates and in human isolates. Group B1 isolates, primarily from nonhuman sources, were the most genetically similar, indicating that they lacked molecular adaptations to specific host environments and were likely host generalists. Conversely, B2 isolates, primarily from human sources, displayed greater genetic distances and were more likely to be host adapted. In agreement with these hypotheses, prevalence of σ(S) activity and the rdar morphotype, phenotypes associated with environmental survival, were significantly higher in B1 isolates than in B2 isolates. Based on our findings, we speculate that E. coli host specificity is not defined by genome-wide sequence changes but, rather, by the presence or absence of specific genes and associated promoter elements. Furthermore, the requirements for colonization of the human gastrointestinal tract may lead to E. coli lifestyle changes along with selection for increased virulence.


Assuntos
Adaptação Biológica , DNA Intergênico , Escherichia coli/classificação , Escherichia coli/genética , Especificidade de Hospedeiro , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Perfilação da Expressão Gênica , Humanos , Filogenia , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fator sigma/metabolismo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...