Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 12(4): 441-462, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29325228

RESUMO

The molecular mechanism of action of the HER2-targeted antibody trastuzumab is only partially understood, and the direct effects of trastuzumab on the gastric cancer signaling network are unknown. In this study, we compared the molecular effect of trastuzumab and the HER kinase inhibitor afatinib on the receptor tyrosine kinase (RTK) network and the downstream-acting intracellular kinases in gastric cancer cell lines. The molecular effects of trastuzumab and afatinib on the phosphorylation of 49 RTKs and 43 intracellular kinase phosphorylation sites were investigated in three gastric cancer cell lines (NCI-N87, MKN1, and MKN7) using proteome profiling. To evaluate these effects, data were analyzed using mixed models and clustering. Moreover, proliferation assays were performed. Our comprehensive quantitative analysis of kinase activity in gastric cancer cell lines indicates that trastuzumab and afatinib selectively influenced the HER family RTKs. The effects of trastuzumab differed between cell lines, depending on the presence of activated HER2. The effects of trastuzumab monotherapy were not transduced to the intracellular kinase network. Afatinib alone or in combination with trastuzumab influenced HER kinases in all cell lines; that is, the effects of monotherapy and combination therapy were transduced to the intracellular kinase network. These results were confirmed by proliferation analysis. Additionally, the MET-amplified cell line Hs746T was identified as afatinib nonresponder. The dependence of the effect of trastuzumab on the presence of activated HER2 might explain the clinical nonresponse of some patients who are routinely tested for HER2 expression and gene amplification in the clinic but not for HER2 activation. The consistent effects of afatinib on HER RTKs and downstream kinase activation suggest that afatinib might be an effective candidate in the future treatment of patients with gastric cancer irrespective of the presence of activated HER2. However, MET amplification should be taken into account as potential resistance factor.


Assuntos
Afatinib/farmacologia , Receptor ErbB-2/metabolismo , Neoplasias Gástricas , Trastuzumab/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia
2.
EMBO Mol Med ; 8(5): 442-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26992833

RESUMO

Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor-specific mutations not only in protein-coding sequences but also in non-coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this "dark matter" of the genome. Malignancy-driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5'-UTR and 3'-UTR Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non-coding RNA, such as microRNA, lncRNA, and lincRNA A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR-21 as well as tumor suppressor genes such as TP53/p53, APC, BRCA1, or RB1 can be affected by these alterations. In summary, coding-independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non-coding or allegedly silent mutations in tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , Splicing de RNA , RNA não Traduzido , Sequências Reguladoras de Ácido Nucleico , Mutação Silenciosa , Regiões não Traduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...