Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222578

RESUMO

In this paper, we present the design and performance of the upgraded University of Florida torsion pendulum facility for testing inertial sensor technology related to space-based gravitational wave observatories and geodesy missions. In particular, much work has been conducted on inertial sensor technology related to the Laser Interferometer Space Antenna (LISA) space gravitational wave observatory mission. A significant upgrade to the facility was the incorporation of a newly designed and fabricated LISA-like gravitational reference sensor (GRS) based on the LISA Pathfinder GRS. Its LISA-like geometry has allowed us to make noise measurements that are more representative of those in LISA and has allowed for the characterization of the mechanisms of noise induced on a LISA GRS and their underlying physics. Noise performance results and experiments exploring the effect of temperature gradients across the sensor will also be discussed. The LISA-like sensor also includes unique UV light injection geometries for UV LED based charge management. Pulsed and DC charge management experiments have been conducted using the University of Florida charge management group's technology readiness level 4 charge management device. These experiments have allowed for the testing of charge management system hardware and techniques as well as characterizations of the dynamics of GRS test mass charging. The work presented here demonstrates the upgraded torsion pendulum's ability to act as an effective testbed for GRS technology.

2.
Rev Sci Instrum ; 93(11): 114503, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461465

RESUMO

There is increasing interest in deep UV Light-Emitting Diodes (LEDs) for applications in water purification, virus inactivation, sterilization, bioagent detection, and UV curing, as well as charge management control in the Laser Interferometer Space Antenna (LISA), which will be the first gravitational wave detector in space. To fully understand the current state of commercial UV LEDs and assess their performance for use on LISA, large numbers of UV LEDs need to be tested across a range of temperatures while operating in air or in a vacuum. We describe a new hardware system designed to accommodate a high volume of UV LED performance tests and present the performance testing results from over 200 UV LEDs with wavelengths in the 250 nm range.


Assuntos
Esterilização , Inativação de Vírus , Temperatura , Vácuo
3.
Rev Sci Instrum ; 90(6): 064501, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31254992

RESUMO

Many applications require charge neutralization of isolated test bodies, and this has been successfully done using photoelectric emission from surfaces which are electrically benign (gold) or superconducting (niobium). Gold surfaces nominally have a high work function (∼5.1 eV) which should require deep UV photons for photoemission. In practice, it has been found that it can be achieved with somewhat lower energy photons with indicative work functions of (4.1-4.3 eV). A detailed working understanding of the process is lacking, and this work reports on a study of the photoelectric emission properties of 4.6 × 4.6 cm2 gold plated surfaces, representative of those used in typical satellite applications with a film thickness of 800 nm, and measured surface roughnesses between 7 and 340 nm. Various UV sources with photon energies from 4.8 to 6.2 eV and power outputs from 1 nW to 1000 nW illuminated ∼0.3 cm2 of the central surface region at angles of incidence from 0° to 60°. Final extrinsic quantum yields in the range 10 ppm-44 ppm were reliably obtained during 8 campaigns, covering a period of ∼3 years but with intermediate long-term variations lasting several weeks and, in some cases, bake-out procedures at up to 200 °C. Experimental results were obtained in a vacuum system with a baseline pressure of ∼10-7 mbar at room temperature. A working model, designed to allow accurate simulation of any experimental configuration, is proposed.

4.
J Telemed Telecare ; 10(3): 130-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15165437

RESUMO

We examined the feasibility of administering neuropsychological tests via videoconference. Twenty-nine participants from central Alberta volunteered for the study. All were 60 years of age or older and were without neurological or psychiatric disturbance. All the participants were tested under two experimental conditions: face to face and via videoconference (at a bandwidth of 336 or 384 kbit/s). Memory and learning, letter fluency, expressive word knowledge, reasoning, verbal attention and visual-spatial processing were examined. Scores for expressive word knowledge were similar in the two test conditions, although larger differences were found in the visual-spatial processing scores. Following the final testing session, participants were given a questionnaire which explored their reactions to the technology. There was no significant difference in the proportions of participants who expressed a preference for each mode of testing. All participants were comfortable with the technology.


Assuntos
Atividades Cotidianas , Avaliação Geriátrica/métodos , Testes Neuropsicológicos , Consulta Remota/métodos , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...