Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Digit Health ; 10: 20552076231220123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250147

RESUMO

Background: Deep Learning is an AI technology that trains computers to analyze data in an approach similar to the human brain. Deep learning algorithms can find complex patterns in images, text, audio, and other data types to provide accurate predictions and conclusions. Neuronal networks are another name for Deep Learning. These layers are the input, the hidden, and the output of a deep learning model. First, data is taken in by the input layer, and then it is processed by the output layer. Deep Learning has many advantages over traditional machine learning algorithms like a KA-nearest neighbor, support vector algorithms, and regression approaches. Deep learning models can read more complex data than traditional machine learning methods. Objectives: This research aims to find the ideal number of best-hidden layers for the neural network and different activation function variations. The article also thoroughly analyzes how various frameworks can be used to create a comparison or fast neural networks. The final goal of the article is to investigate all such innovative techniques that allow us to speed up the training of neural networks without losing accuracy. Methods: A sample data Set from 2001 was collected by www.Kaggle.com. We can reduce the total number of layers in the deep learning model. This will enable us to use our time. To perform the ReLU activation, we will make use of two layers that are completely connected. If the value being supplied is larger than zero, the ReLU activation will return 0, and else it will output the value being input directly. Results: We use multiple parameters to determine the most effective method to test how well our method works. In the next paragraph, we'll discuss how the calculation changes secret-shared Values. By adopting 19 train set features, we train our reliable model to predict healthcare cost's (numerical) target feature. We found that 0.89503 was the best choice because it gave us a good fit (R2) and let us set enough coefficients to 0. To develop our stable model with this Set of parameters, we require 26 iterations. We use an R2 of 0.89503, an MSE of 0.01094, an RMSE of 0.10458, a mean residual deviance of 0.01094, a mean absolute error of 0.07452, and a root mean squared log error of 0.07207. After training the model on the train set, we applied the same parameters to the test set and obtained an R2 of 0.90707, MSE of 0.01045, RMSE of 0.10224, mean residual deviation of 0.01045, MAE of 0.06954, and RMSE of 0.07051, validating our solution approach. The objective value of our secured model is higher than that of the scikit-learn model, although the former performs better on goodness-of-fit criteria. As a result, our protected model performs quite well, marginally outperforming the (very optimized) scikit-learn model. Using a backpropagation algorithm and stochastic gradient descent, deep Learning develops artificial neural systems with several interconnected layers. There may be hidden layers of neurons in the network that have the tanh, rectification, and max-out hyperparameters. Modern features like momentum training, dropout, active learning rate, rate annealed, and L1 or L2 regularization provide exceptional prediction performance. The worldwide model's parameters are multi-threadedly (asynchronously) trained on the data from that node, and the model-based data is then gradually augmented by model averaging over the entire network. The method is executed on a single-node, direct H2O cluster initiated by the operator. The operation is parallel despite there just being a single node involved. The number of threads may be adjusted in the settings menu under Preferences and General. The optimal number of threads for the system is used automatically. Successful predictions in the healthcare data sets are made using the H2O Deep Learning operator. There will be a classification done since its label is binomial. The Splitting Validation operator creates test and training datasets to evaluate the model. By default, the settings of the Deep Learning activator are used. To put it another way, we'll construct two hidden layers, each containing 50 neurons. The Accuracy measure is computed by linking the annotated Sample Set with a Performer (Binominal Classification) operator. Table 3 displays the Deep Learning Model, the labeled data, and the Performance Vector that resulted from the technique. Conclusions: Deep learning algorithms can be used to design systems that report data on patients and deliver warnings to medical applications or electronic health information if there are changes in the patient's health. These systems could be created using deep Learning. This helps verify that patients get the proper effective care at the proper time for each specific patient. A healthcare decision support system was presented using the Internet of Things and deep learning methods. In the proposed system, we examined the capability of integrating deep learning technology into automatic diagnosis and IoT capabilities for faster message exchange over the Internet. We have selected the suitable Neural Network structure (number of best-hidden layers and activation function classes) to construct the e-health system. In addition, the e-health system relied on data from doctors to understand the Neural Network. In the validation method, the total evaluation of the proposed healthcare system for diagnostics provides dependability under various patient conditions. Based on evaluation and simulation findings, a dual hidden layer of feed-forward NN and its neurons store the tanh function more effectively than other NN. To overcome challenges, this study will integrate artificial intelligence with IoT. This study aims to determine the NN's optimal layer counts and activation function variations.

2.
Behav Neurol ; 2022: 4279346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35287287

RESUMO

Nowadays, sentimental analysis of consumers' review is becoming much crucial in the marketing world. It is not just giving ideas to the firms that how consumers like their product or service, but it would also help them make their service better. In this article, the statistical method identifies the relationship of many factors in consumer feedback. It introduces a deep-based learning method called DSC (deep sentiment classifier) to determine whether or not to recommend the reviewed product thoroughly. Our suggested method also investigates the effect sizes of the feedback, such as positives, negatives, and neutrals. We used the women's clothing review dataset containing 22,642 records after preprocessing of the results. Experimental studies show that the recommendations are an excellent positive sentiment indicator. In comparison, ratings become fuzzy performance metrics in product reviews. The 10-fold cross-validation analysis shows that the recommended form has the top F1 score (93.56%) in the sentimental classification on average and the recommended classification (88.32%) on average. A comparative description of other classifiers focused on machine learning, for example, KNN, random forest, logistic regression, decision tree, support vector machine multilayer perceptron, and naïve Bayes, also demonstrates that DSC gives the best possible result. We have tested DSC on the dataset IMDB (Internet Video Database), which includes the sentiment of the 50,000 movie reviews (25000 for training and 25000 for testing). In comparison to other baseline methods, DSC obtained an excellent classification score for this experiment.


Assuntos
Coronavirus , Teorema de Bayes , Surtos de Doenças , Feminino , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
3.
Behav Neurol ; 2022: 4847066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178124

RESUMO

Stroke, also known as a cerebrovascular accident, is a medical emergency that causes temporary or permanent behavioral dysfunction in people. Sleep deprivation affects our brains in a variety of ways. The advantages of sleep much justify the risks of not having enough sleep. Sleep deprivation (SD) includes a variety of factors, including prolonged awake. Neuroimaging investigates SD's impact on attention, working memory, mood, and hippocampal learning. We analyzed how this data enriches our mechanistic understanding of these alterations and the clinical illnesses linked with sleep disruption. We have used Cronbach's alpha to test the reliability of a scale, so we then have 19 individual attributes responding to 174 participants via survey. The evaluated result shows the reliability statistics; the value for Cronbach's alpha is .962, which is very excellent as it reaches 1. So, there is very strong reliability. If the value falls under .6, we look back to the mean and standard deviation table and remove the attribute with low values for mean or standard deviation and try the remaining attributes. Cronbach's alpha tells us which attribute or item to delete to increase the reliability, and we also have analyzed the correlation among the class students while watching the same video lecture. We have collected data for at least ten students watching the same video using a webcam. Once the data is collected, we then have applied some correlation techniques to determine the class students' behavior towards the same video lecture. This way, we can see the overall behavior of the class upon a specific video lecture. The study further reveals that subjective happiness is influenced by its efficiency, entertainment value, and effectiveness. Does the research offer an original emphasis on analyzing how does lack of sleep affect our brains? Sleep loss frameworks are minimal compared to the benefits of sleep.


Assuntos
Educação a Distância , Acidente Vascular Cerebral , Humanos , Aprendizagem , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/complicações , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...