Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 8: 64, 2013 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-23981289

RESUMO

BACKGROUND: Wolfram Syndrome (WFS:OMIM 222300) is an autosomal recessive, progressive, neurologic and endocrinologic degenerative disorder caused by mutations in the WFS1 gene, encoding the endoplasmic reticulum (ER) protein wolframin, thought to be involved in the regulation of ER stress. This paper reports a cross section of data from the Washington University WFS Research Clinic, a longitudinal study to collect detailed phenotypic data on a group of young subjects in preparation for studies of therapeutic interventions. METHODS: Eighteen subjects (ages 5.9-25.8, mean 14.2 years) with genetically confirmed WFS were identified through the Washington University International Wolfram Registry. Examinations included: general medical, neurologic, ophthalmologic, audiologic, vestibular, and urologic exams, cognitive testing and neuroimaging. RESULTS: Seventeen (94%) had diabetes mellitus with the average age of diabetes onset of 6.3 ± 3.5 years. Diabetes insipidus was diagnosed in 13 (72%) at an average age of 10.6 ± 3.3 years. Seventeen (94%) had optic disc pallor and defects in color vision, 14 (78%) had hearing loss and 13 (72%) had olfactory defects, eight (44%) had impaired vibration sensation. Enuresis was reported by four (22%) and nocturia by three (17%). Of the 11 tested for bladder emptying, five (45%) had elevated post-void residual bladder volume. CONCLUSIONS: WFS causes multiple endocrine and neurologic deficits detectable on exam, even early in the course of the disease. Defects in olfaction have been underappreciated. The proposed mechanism of these deficits in WFS is ER stress-induced damage to neuronal and hormone-producing cells. This group of subjects with detailed clinical phenotyping provides a pool for testing proposed treatments for ER stress. Longitudinal follow-up is necessary for establishing the natural history and identifying potential biomarkers of progression.


Assuntos
Síndrome de Wolfram/fisiopatologia , Adolescente , Adulto , Criança , Defeitos da Visão Cromática/fisiopatologia , Retículo Endoplasmático/patologia , Feminino , Perda Auditiva/fisiopatologia , Humanos , Masculino , Adulto Jovem
2.
Diabetes Technol Ther ; 13(7): 781-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21517693

RESUMO

Wolfram syndrome (WS), or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is a rare autosomal recessive neurodegenerative disorder with a median life expectancy of 30 years and occurs in one in 770,000 live births. To date only five successful pregnancies have been reported among WS subjects worldwide. Here we describe the sixth report of successful pregnancy in a WS patient and the first from India. The subject is still on an insulin pump, now 31 years old and doing well. She developed diabetes at 5 years of age, optic atrophy at 14 years, and diabetes insipidus at 25 years and had a successful delivery in 2007 while on an insulin pump. Sequencing of exonic regions of the WFS1 gene showed five changes, two of which were pathogenic (exon 8). Magnetic resonance imaging of brain showed generalized neurodegenerative changes. The benefits of continuous subcutaneous insulin infusion and that of tight metabolic control in prevention of abortions and fetal malformations in diabetes associated with pregnancy are well documented. The impression of probable pleiotropic action of insulin pumps over and above that of glycemic reduction is gaining momentum. Recent evidence supports use of insulin pumps in alleviating neuropathic pain in diabetes, probably by virtue of its action in minimizing mean amplitude of glycemic excursions not possible with conventional insulin shots. WS is a progressive neurodegenerative disorder, which will probably help us in understanding the positive impact of continuous subcutaneous insulin infusion in prolonging the life span and retarding neuronal damage in WS.


Assuntos
Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Complicações na Gravidez/tratamento farmacológico , Síndrome de Wolfram/tratamento farmacológico , Adulto , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Índia , Insulina/uso terapêutico , Nascido Vivo , Gravidez , Resultado do Tratamento
3.
PLoS One ; 5(3): e9903, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20361036

RESUMO

BACKGROUND: Evidence has accumulated that multiple genetic and environmental factors play important roles in determining susceptibility to type 2 diabetes (T2D). Although variants from candidate genes have become prime targets for genetic analysis, few studies have considered their interplay. Our goal was to evaluate interactions among SNPs within genes frequently identified as associated with T2D. METHODS/PRINCIPAL FINDINGS: Logistic regression was used to study interactions among 4 SNPs, one each from HNF4A[rs1884613], TCF7L2[rs12255372], WFS1[rs10010131], and KCNJ11[rs5219] in a case-control Ashkenazi sample of 974 diabetic subjects and 896 controls. Nonparametric multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) were used to confirm findings from the logistic regression analysis. HNF4A and WFS1 SNPs were associated with T2D in logistic regression analyses [P<0.0001, P<0.0002, respectively]. Interaction between these SNPs were also strong using parametric or nonparametric methods: the unadjusted odds of being affected with T2D was 3 times greater in subjects with the HNF4A and WFS1 risk alleles than those without either (95% CI = [1.7-5.3]; P

Assuntos
Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Judeus , Masculino , Pessoa de Meia-Idade , Risco
4.
Diabetes ; 59(3): 741-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028947

RESUMO

OBJECTIVE: Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk. RESEARCH DESIGN AND METHODS: For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects. RESULTS: Of 31 tagging SNPs, the strongest associated was the previously untested 3' untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 x 10(-7) on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01-0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes. CONCLUSIONS: We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Variação Genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Mapeamento Cromossômico , Éxons/genética , Haplótipos , Heterozigoto , Humanos , Sítios de Splice de RNA/genética , Fatores de Risco , Reino Unido/epidemiologia
5.
Diabetes ; 57(11): 3161-5, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18728231

RESUMO

OBJECTIVE: Single nucleotide polymorphisms (SNPs) in the P2 promoter region of HNF4A were originally shown to be associated with predisposition for type 2 diabetes in Finnish, Ashkenazi, and, more recently, Scandinavian populations, but they generated conflicting results in additional populations. We aimed to investigate whether data from a large-scale mapping approach would replicate this association in novel Ashkenazi samples and in U.K. populations and whether these data would allow us to refine the association signal. RESEARCH DESIGN AND METHODS: Using a dense linkage disequilibrium map of 20q, we selected SNPs from a 10-Mb interval centered on HNF4A. In a staged approach, we first typed 4,608 SNPs in case-control populations from four U.K. populations and an Ashkenazi population (n = 2,516). In phase 2, a subset of 763 SNPs was genotyped in 2,513 additional samples from the same populations. RESULTS: Combined analysis of both phases demonstrated association between HNF4A P2 SNPs (rs1884613 and rs2144908) and type 2 diabetes in the Ashkenazim (n = 991; P < 1.6 x 10(-6)). Importantly, these associations are significant in a subset of Ashkenazi samples (n = 531) not previously tested for association with P2 SNPs (odds ratio [OR] approximately 1.7; P < 0.002), thus providing replication within the Ashkenazim. In the U.K. populations, this association was not significant (n = 4,022; P > 0.5), and the estimate for the OR was much smaller (OR 1.04; [95%CI 0.91-1.19]). CONCLUSIONS: These data indicate that the risk conferred by HNF4A P2 is significantly different between U.K. and Ashkenazi populations (P < 0.00007), suggesting that the underlying causal variant remains unidentified. Interactions with other genetic or environmental factors may also contribute to this difference in risk between populations.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fator 4 Nuclear de Hepatócito/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Diabetes Mellitus Tipo 2/etnologia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Judeus/genética , Desequilíbrio de Ligação , Razão de Chances , Fatores de Risco , Reino Unido , População Branca/genética
6.
PLoS One ; 3(5): e2031, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18461161

RESUMO

BACKGROUND: Recently, several Genome Wide Association (GWA) studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D). Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT) individuals. METHODOLOGY/PRINCIPAL FINDINGS: In the same French population analyzed in our previous GWA study (3,295 T2D and 3,595 NGT), strong associations with T2D were found for CDKAL1 (OR(rs7756992) = 1.30[1.19-1.42], P = 2.3x10(-9)), CDKN2A/2B (OR(rs10811661) = 0.74[0.66-0.82], P = 3.5x10(-8)) and more modestly for IGFBP2 (OR(rs1470579) = 1.17[1.07-1.27], P = 0.0003) SNPs. These results were replicated in both Israeli Ashkenazi (577 T2D and 552 NGT) and Austrian (504 T2D and 753 NGT) populations (except for CDKAL1) but not in the Moroccan population (521 T2D and 423 NGT). In the overall group of French subjects (4,232 T2D and 4,595 NGT), IGFBP2 and CXCR4 synergistically interacted with (LOC38776, SLC30A8, HHEX) and (NGN3, CDKN2A/2B), respectively, encoding for proteins presumably regulating pancreatic endocrine cell development and function. The T2D risk increased strongly when risk alleles, including the previously discovered T2D-associated TCF7L2 rs7903146 SNP, were combined (8.68-fold for the 14% of French individuals carrying 18 to 30 risk alleles with an allelic OR of 1.24). With an area under the ROC curve of 0.86, only 15 novel loci were necessary to discriminate French individuals susceptible to develop T2D. CONCLUSIONS/SIGNIFICANCE: In addition to TCF7L2, SLC30A8 and HHEX, initially identified by the French GWA scan, CDKAL1, IGFBP2 and CDKN2A/2B strongly associate with T2D in French individuals, and mostly in populations of Central European descent but not in Moroccan subjects. Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D, opening avenues for the development of genetic prediction tests.


Assuntos
Diabetes Mellitus Tipo 2/genética , Genoma Humano , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Quinase 5 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Diabetes Mellitus Tipo 2/epidemiologia , França , Marcadores Genéticos , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , tRNA Metiltransferases
7.
Hum Mol Genet ; 17(11): 1695-704, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18305138

RESUMO

A region along chromosome 7q was recently linked to components of the metabolic syndrome (MetS) in several genome-wide linkage studies. Within this region, the CD36 gene, which encodes a membrane receptor for long-chain fatty acids and lipoproteins, is a potentially important candidate. CD36 has been documented to play an important role in fatty acid metabolism in vivo and subsequently may be involved in the etiology of the MetS. The protein also impacts survival to malaria and the influence of natural selection has resulted in high CD36 genetic variability in populations of African descent. We evaluated 36 tag SNPs across CD36 in the HyperGen population sample of 2020 African-Americans for impact on the MetS and its quantitative traits. Five SNPs associated with increased odds for the MetS [P = 0.0027-0.03, odds ratio (OR) = 1.3-1.4]. Coding SNP, rs3211938, previously shown to influence malaria susceptibility, is documented to result in CD36 deficiency in a homozygous subject. This SNP conferred protection against the MetS (P = 0.0012, OR = 0.61, 95%CI: 0.46-0.82), increased high-density lipoprotein cholesterol, HDL-C (P = 0.00018) and decreased triglycerides (P = 0.0059). Fifteen additional SNPs associated with HDL-C (P = 0.0028-0.044). We conclude that CD36 variants may impact MetS pathophysiology and HDL metabolism, both predictors of the risk of heart disease and type 2 diabetes.


Assuntos
Antígenos CD36/genética , HDL-Colesterol/sangue , Predisposição Genética para Doença , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , Polimorfismo de Nucleotídeo Único , Adulto , Negro ou Afro-Americano/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos
8.
Nat Genet ; 39(8): 951-3, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17603484

RESUMO

We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia
9.
Biotechniques ; 32(5): 1144-6, 1148, 1150 passim, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12019788

RESUMO

Single nucleotide polymorphism (SNP) association studies searching for differences in allele frequencies between cases and controls have been widely used for genetic analysis. Individual genotyping is prohibitively expensive in large sample sizes. Pooling of samples provides the obvious advantage of higher throughput and lower cost. Here we report our results with the analysis of SNP allele frequencies in DNA pools using Pyrosequencing technology. For seven different SNPs, we observed a mean difference of 1.1 +/- 0.6% between allele frequencies determined in two different DNA pools (n = 150 cases and 150 controls) compared to individually genotyped samples.


Assuntos
Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Diabetes Mellitus Tipo 2/genética , Genótipo , Humanos , Judeus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...