Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34369554

RESUMO

Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport.


Assuntos
Exocitose/genética , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas de Membrana/fisiologia , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/fisiologia , Humanos , Transporte Proteico/genética
2.
Biochem Biophys Res Commun ; 445(2): 334-9, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24525133

RESUMO

Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.


Assuntos
Autofagia/efeitos dos fármacos , Cicloeximida/farmacologia , Ativação Enzimática/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Naftiridinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inanição/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...