Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2128, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746980

RESUMO

Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorß (TGFß)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFß-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose , Bleomicina/toxicidade , Bleomicina/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Bioresour Technol ; 243: 747-754, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28711803

RESUMO

Anaerobic membrane bioreactor (AnMBR) for sewage treatment was operated for 650days with the decrease of temperature from 25°C to 10°C. At higher temperature >15°C, COD removal was above 94% while sewage treatment efficiency and relevant CH4 production decreased below 15°C. The effluent COD at 10°C was 134mg/L at HRT of 16h. Moreover, low temperature can result in a higher membrane fouling rate due to the microbial self-protection behavior in coping with the temperature decrease by releasing soluble microbial products (SMP) and extracellular polymeric substances (EPS). The contribution of pore blocking to membrane fouling caused by protein from SMP and EPS increased from 17% to 45% and that of cake layer decreased from 81% to 53% at 25°C and 15°C respectively. The inhibition to hydrolysis and acidification process was responsible to the decrease of sewage treatment at lower temperature.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Membranas Artificiais , Temperatura
3.
Bioresour Technol ; 216: 128-34, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27235975

RESUMO

Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Celulose/metabolismo , Membranas Artificiais , Esgotos/microbiologia , Temperatura , Biodiversidade , Análise da Demanda Biológica de Oxigênio , Metano/metabolismo , RNA Ribossômico 16S/genética , Fatores de Tempo , Qualidade da Água
4.
Bioresour Technol ; 150: 387-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24189339

RESUMO

The use of Japanese cedar charcoal as a support material for microbial attachment could enhance methane production during anaerobic digestion of crude glycerol and wastewater sludge. Methane yield from a charcoal-containing reactor was approximately 1.6 times higher than that from a reactor without charcoal, and methane production was stable over 50 days when the loading rate was 2.17 g chemical oxygen demand (COD) L(-1) d(-1). Examination of microbial communities on the charcoal revealed the presence of Uncultured Desulfovibrio sp. clone V29 and Pelobacter seleniigenes, known as 1,3-propandiol degraders. Hydrogenotrophic methanogens were also detected in the archaeal community on the charcoal. Methanosaeta, Methanoregula, and Methanocellus were present in the charcoal-containing reactor. The concentration of propionate in the charcoal-containing reactor was also lower than that in the control reactor. These results suggest that propionate degradation was enhanced by the consumption of hydrogen by hydrogenotrophic methanogens on the charcoal.


Assuntos
Biotecnologia/métodos , Carvão Vegetal/farmacologia , Cryptomeria/química , Glicerol/metabolismo , Metano/biossíntese , Anaerobiose/efeitos dos fármacos , Archaea/efeitos dos fármacos , Archaea/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Ácidos Graxos Voláteis/análise , Propionatos/metabolismo , Análise de Sequência de DNA , Esgotos/química , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 142: 304-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747441

RESUMO

Three continuous stirred tank reactors (CSTR) were operated under mesophilic (37 ± 1°C), thermophilic (55 ± 1°C) and hyper-thermophilic (80 ± 1°C) temperatures for 164 days to investigate the effect of temperature and temperature shock on the cellulosic-dark hydrogen fermentation by mixed microflora. During steady state condition, the sudden decreases in the fermentation temperature occurred twice in each condition for 24h. The results show that the 55 ± 1 and 80 ± 1°C presented stable hydrogen yields of 12.28 and 9.72 mmol/g cellulose, respectively. However, the 37 ± 1°C presented low hydrogen yield of 3.56 mmol/g cellulose and methane yield of 5.4 mmol/g cellulose. The reactor performance under 55 ± 1 or 80 ± 1°C appeared to be more resilient to the sudden decreases in the fermentation temperature than 37 ± 1°C. The experimental analysis results indicated that the changing in soluble by-products could explain the effect of temperature and temperature shock, and the thermophilic temperature is expected having a better economic performance for cellulosic-hydrogen fermentation.


Assuntos
Celulose/química , Fermentação , Hidrogênio/química , Temperatura , Análise da Demanda Biológica de Oxigênio
6.
Bioresour Technol ; 140: 342-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23708849

RESUMO

This report is the first to consider methane production energy balance from crude glycerol at a practical rather than a laboratory scale. Crude glycerol was added to the plant progressively at between 5 and 75 L glycerol/30 m(3)-day for 1.5 years, and the energy balance was positive at a loading rate of 30 L glycerol/30 m(3)-day (1 ml/L-day). At this loading rate over one year, an energy output equivalent to 106% of the energy input was achieved. The surplus energy was equivalent to transport for 1200 km, so the proper feedstock-transportation distance was within a 12.5-km radius of the biogas plant. In addition, the digested sludge contained fertilizer components (T-N: 0.11%, P2O5: 0.036%, K2O: 0.19%) that increased grass yield by 1.2 times when applied to grass fields. Thus, crude glycerol is an attractive bioresource that can be used as both a feedstock for methane production and a liquid fertilizer.


Assuntos
Biocombustíveis , Fertilizantes , Glicerol/química , Metano/biossíntese , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biodegradação Ambiental , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Projetos Piloto , Poaceae/crescimento & desenvolvimento , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...