Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(10): 105101, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518327

RESUMO

It is found that, in the studies of heavy ion transport with gyrokinetic simulations, the ion parallel drift frequency can reverse sign in velocity space when the amplitude variation of the electrostatic potential fluctuation is strong along the magnetic field line. As a result, the particle transport related to the parallel dynamics is strongly enhanced. It is noted that, while parallel gradient of the fluctuation amplitude can be instigated by a large magnetic shear or safety factor in a tokamak, the generic mechanism is independent of its cause, which suggests broader applications to kinetic plasma problems. Some relevant topics are briefly addressed in the end.

2.
Phys Rev Lett ; 123(2): 025003, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386508

RESUMO

Plasma ß dependence of electromagnetic turbulent transport is investigated by means of gyrokinetic simulations with self-consistent change of the equilibrium magnetic field. It is found that energy transport due to ion-temperature-gradient (ITG) driven turbulence does not decrease with increasing ß; that is, the ion energy diffusivity does not decrease, and the electron energy diffusivity increases with ß. This is because magnetic fluctuations are significantly influenced by the background magnetic field structure change with ß by the Pfirsch-Schluter current. The magnetic field change weakens the suppression effect of magnetic perturbations on the growth of the ITG mode, and it also suppresses nonlinear zonal flow production. The influence of the magnetic field change is significant as the global magnetic shear increases.

3.
Phys Rev Lett ; 119(19): 195002, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219486

RESUMO

Gyrokinetic turbulence simulations are applied for the first time to the cross-scale interactions of microtearing modes (MTMs) and electron-temperature-gradient (ETG) modes. The investigation of the fluctuation response in a multiscale simulation including both types of instabilities indicates that MTMs are suppressed by ETG turbulence. A detailed analysis of nonlinear mode coupling reveals that radially localized current-sheet structures of MTMs are strongly distorted by fine-scale E×B flows of ETG turbulence. Consequently, electron heat transport caused by the magnetic flutter of MTMs is significantly reduced and ETG turbulence dominates electron heat transport.

4.
Phys Rev Lett ; 114(25): 255002, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197130

RESUMO

Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and ß value are realized for the first time, where the ß value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-ß effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport.

5.
Phys Rev Lett ; 107(24): 245002, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22243005

RESUMO

The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

6.
Phys Rev Lett ; 100(19): 195002, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18518454

RESUMO

Gyrokinetic Vlasov simulations of the ion temperature gradient turbulence are performed in order to investigate effects of helical magnetic configurations on turbulent transport and zonal flows. The obtained results confirm the theoretical prediction that helical configurations optimized for reducing neoclassical ripple transport can simultaneously reduce the turbulent transport with enhancing zonal-flow generation. Stationary zonal-flow structures accompanied with transport reduction are clearly identified by the simulation for the neoclassically optimized helical geometry. The generation of the stationary zonal flow explains a physical mechanism for causing the confinement improvement observed in the inward-shifted plasma in the Large Helical Device [O. Motojima, Nucl. Fusion 43, 1674 (2003)].

7.
Phys Rev Lett ; 94(11): 115001, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15903865

RESUMO

A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...