Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Curr Res Food Sci ; 8: 100713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545380

RESUMO

Sparassis crispa, an edible mushroom, has been reported to show many kinds of physiological functions. The present paper focused on reducing body weight, subcutaneous fat, and visceral fat gain in ovariectomized (OVX) mice. Using the fruiting body powder of the indoor cultivation S. crispa (IT S. crispa: ITSc), one week after the OVX, ITSc was administered to two OVX groups by per os (p.o). In the sham group, 10 mL/kg water and 10 mL/kg saline were administered by p.o. and subcutaneous adm, respectively. OVX groups were divided into four groups. These treatments were performed on animals 6 days a week for 8 weeks. Subcutaneous and visceral fat measurements were performed under inhalation anesthesia with isoflurane using a Latheta LCT-200 X-ray CT system. The biochemical markers and the mRNA expression levels of the PPARγ, adiponectin, TNF-α, PPARα, and leptin were measured. Significant increases in body weight, fat ratio, and glucose levels were detected in OVX mice compared to sham mice. These increases were significantly blocked by ITSc, but not estradiol. Furthermore, ITSc treatment significantly increased adiponectin and leptin levels in adipose tissue. These results suggest that ITSc improves lipid abnormalities due to the less activity of women's ovary function, excluding estrogen functions.

2.
Sci Rep ; 13(1): 16456, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777556

RESUMO

D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.


Assuntos
Cistationina gama-Liase , Bases de Schiff , Animais , Humanos , Ratos , Domínio Catalítico , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373128

RESUMO

Cystathionine γ-lyase (CSE) is an enzyme responsible for the biosynthesis of cysteine from cystathionine in the final step of the transsulfuration pathway. It also has ß-lyase activity toward cystine, generating cysteine persulfide (Cys-SSH). The chemical reactivity of Cys-SSH is thought to be involved in the catalytic activity of particular proteins via protein polysulfidation, the formation of -S-(S)n-H on their reactive cysteine residues. The Cys136/171 residues of CSE have been proposed to be redox-sensitive residues. Herein, we investigated whether CSE polysulfidation occurs at Cys136/171 during cystine metabolism. Transfection of wild-type CSE into COS-7 cells resulted in increased intracellular Cys-SSH production, which was significantly increased when Cys136Val or Cys136/171Val CSE mutants were transfected, instead of the wild-type enzyme. A biotin-polyethylene glycol-conjugated maleimide capture assay revealed that CSE polysulfidation occurs at Cys136 during cystine metabolism. In vitro incubation of CSE with CSE-enzymatically synthesized Cys-SSH resulted in the inhibition of Cys-SSH production. In contrast, the mutant CSEs (Cys136Val and Cys136/171Val) proved resistant to inhibition. The Cys-SSH-producing CSE activity of Cys136/171Val CSE was higher than that of the wild-type enzyme. Meanwhile, the cysteine-producing CSE activity of this mutant was equivalent to that of the wild-type enzyme. It is assumed that Cys-SSH-producing CSE activity could be auto-inactivated via the polysulfidation of the enzyme during cystine metabolism. Thus, the polysulfidation of CSE at the Cys136 residue may be an integral feature of cystine metabolism, which functions to down-regulate Cys-SSH synthesis by the enzyme.


Assuntos
Cistationina gama-Liase , Sulfeto de Hidrogênio , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistina/metabolismo , Cisteína/metabolismo , Proteínas/metabolismo , Oxirredução , Sulfeto de Hidrogênio/metabolismo
4.
Biomedicines ; 11(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37239111

RESUMO

BACKGROUND: A chronic subdural hematoma (CSDH) is considered to be an inflammatory and angiogenic disease. The CSDH outer membrane, which contains inflammatory cells, plays an important role in CSDH development. Osteopontin (OPN) is an extracellular matrix protein that is cleaved by thrombin, generating the N-terminal half of OPN, which is prominently involved in integrin signal transduction. We explored the expression of the N-terminal half of OPN in CSDH fluid and the expression of integrins α9 and ß1 and the downstream components of the angiogenic signaling pathways in the outer membrane of CSDHs. METHODS: Twenty samples of CSDH fluid and eight samples of CSDH outer membrane were collected from patients suffering from CSDHs. The concentrations of the N-terminal half of OPN in CSDH fluid samples were measured using ELISA kits. The expression levels of integrins α9 and ß1, vinculin, talin-1, focal adhesion kinase (FAK), paxillin, α-actin, Src and ß-actin were examined by Western blot analysis. The expression levels of integrins α9 and ß1, FAK and paxillin were also examined by immunohistochemistry. We investigated whether CSDH fluid could activate FAK in cultured endothelial cells in vitro. RESULTS: The concentration of the N-terminal half of OPN in CSDH fluid was significantly higher than that in the serum. Western blot analysis confirmed the presence of these molecules. In addition, integrins α9 and ß1, FAK and paxillin were localized in the endothelial cells of vessels within the CSDH outer membrane. FAK was significantly phosphorylated immediately after treatment with CSDH fluid. CONCLUSION: Our data suggest that the N-terminal half of OPN in CSDH fluid promotes neovascularization in endothelial cells through integrins α9 and ß1. The N-terminal half of OPN, which is part of the extracellular matrix, plays a critical role in the promotion of CSDHs.

5.
Biochem Biophys Res Commun ; 637: 181-188, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403481

RESUMO

The Chikungunya virus (CHIKV), an enveloped RNA virus that has been identified in over 40 countries and is considered a growing threat to public health worldwide. However, there is no preventive vaccine or specific therapeutic drug for CHIKV infection. To identify a new inhibitor against CHIKV infection, this study constructed a subgenomic RNA replicon expressing the secretory Gaussia luciferase (Gluc) based on the CHIKV SL11131 strain. Transfection of in vitro-transcribed replicon RNA to BHK-21 cells revealed that Gluc activity in culture supernatants was correlated with the intracellular replication of the replicon genome. Through a chemical compound library screen using the Gluc reporter CHIKV replicon, we identified several compounds that suppressed CHIKV infection in Vero cells. Among the hits identified, CP-154,526, a non-peptide antagonist of the corticotropin-releasing factor receptor type-1 (CRF-R1), showed the strongest anti-CHIKV activity and inhibited CHIKV infection in Huh-7 cells. Interestingly, other CRF-R1 antagonists, R121919 and NGD 98-2, also exhibited inhibitory effects on CHIKV infection. Time-of-drug addition and virus entry assays indicated that CP-154,526 suppressed a post-entry step of infection, suggesting that CRF-R1 antagonists acted on a target in the intracellular replication process of CHIKV. Therefore, the Gluc reporter replicon system established in this study would greatly facilitate the development of antiviral drugs against CHIKV infection.


Assuntos
Arecaceae , Febre de Chikungunya , Vírus Chikungunya , Copépodes , Chlorocebus aethiops , Animais , Vírus Chikungunya/genética , Febre de Chikungunya/tratamento farmacológico , Células Vero , Hormônio Liberador da Corticotropina , Replicon/genética , Luciferases/genética , Replicação Viral
6.
Nitric Oxide ; 120: 44-52, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033681

RESUMO

We previously demonstrated different expression patterns of the neuronal nitric oxide synthase (nNOS) splicing variants, nNOS-µ and nNOS-α, in the rat brain; however, their exact functions have not been fully elucidated. In this study, we compared the enzymatic activities of nNOS-µ and nNOS-α and investigated intracellular redox signaling in nNOS-expressing PC12 cells, stimulated with a neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+), to enhance the nNOS uncoupling reaction. Using in vitro studies, we show that nNOS-µ produced nitric oxide (NO), as did nNOS-α, in the presence of tetrahydrobiopterin (BH4), an important cofactor for the enzymatic activity. However, nNOS-µ generated more NO and less superoxide than nNOS-α in the absence of BH4. MPP + treatment induced more reactive oxygen species (ROS) production in nNOS-α-expressing PC12 cells than in those expressing nNOS-µ, which correlated with the intracellular production of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a downstream messenger of nNOS redox signaling, and apoptosis in these cells. Furthermore, post-treatment with 8-nitro-cGMP aggravated MPP+-induced cytotoxicity via activation of the H-Ras/extracellular signal-regulated kinase signaling pathway. In conclusion, our results provide strong evidence that nNOS-µ exhibits distinctive enzymatic properties of NO/ROS production, contributing to the regulation of intracellular redox signaling, including the downstream production of 8-nitro-cGMP.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Apoptose/efeitos dos fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxirredução , Células PC12 , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Ratos
7.
J Virol ; 96(6): e0184321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045265

RESUMO

HIV-1 integrase (IN) is an essential enzyme for viral replication. Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 IN inhibitors and a potential new class of antiretrovirals. In this report, we identified a novel NCINI, JTP-0157602, with an original scaffold. JTP-0157602 exhibited potent antiviral activity against HIV-1 and showed a serum-shifted 90% effective concentration (EC90) of 138 nM, which is comparable to those of the FDA-approved IN strand transfer inhibitors (INSTIs). This compound was fully potent against a wide range of recombinant viruses with IN polymorphisms, including amino acids 124/125, a hot spot of IN polymorphisms. In addition, JTP-0157602 retained potent antiviral activity against a broad panel of recombinant viruses with INSTI-related resistance mutations, including multiple substitutions that emerged in clinical studies of INSTIs. Resistance selection experiments of JTP-0157602 led to the emergence of A128T and T174I mutations, which are located at the lens epithelium-derived growth factor/p75 binding pocket of IN. JTP-0157602 inhibited HIV-1 replication mainly during the late phase of the replication cycle, and HIV-1 virions produced by reactivation from HIV-1 latently infected Jurkat cells in the presence of JTP-0157602 were noninfectious. These results suggest that JTP-0157602 and analog compounds can be used to treat HIV-1 infectious diseases. IMPORTANCE Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 integrase (IN) inhibitors that bind to the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. NCINIs are expected to be a new class of anti-HIV-1 agents. In this study, we present a novel NCINI, JTP-0157602, which has potent activity against a broad range of HIV-1 strains with IN polymorphisms. Furthermore, JTP-0157602 shows strong antiviral activity against IN strand transfer inhibitor-resistant mutations, suggesting that JTP-0157602 and its analogs are potential agents for treating HIV-1 infections. Structural modeling indicated that JTP-0157602 binds to the LEDGF/p75 binding pocket of IN, and the results of in vitro resistance induction revealed the JTP-0157602 resistance mechanism of HIV-1. These data shed light on developing novel NCINIs that exhibit potent activity against HIV-1 with broad IN polymorphisms and multidrug-resistant HIV-1 variants.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Resistência a Medicamentos/genética , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/genética , Humanos
8.
J Neuroimmunol ; 357: 577610, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030107

RESUMO

OBJECTIVE: Neutrophils induce inflammation through the exocytosis of cytotoxic granule proteins. Recently, neutrophils have been reported to be an independent parameter associated with unfavorable outcomes after subarachnoid hemorrhage (SAH). However, the mechanism by which neutrophils accumulate within the CSF after SAH remains undetermined. METHODS: Concentrations of C5a, epithelial neutrophil activating peptide 78 (ENA-78), interleukin-8 (IL-8), growth-regulated oncogene-α (GRO-α), neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO) were measured serially until day 14 in the CSF of 10 patients with SAH. CSF samples obtained from patients suffering from unruptured aneurysms were used as controls. RESULTS: The concentrations of C5a and ENA-78 were significantly increased on day 1, while those of IL-8 and GRO-α significantly increased during days 3-7 compared with those of the control samples. The levels of NGAL and MPO, components of neutrophil granules, significantly increased during days 1-5 and days 1-3, respectively, after SAH and gradually decreased thereafter. The correlations between ENA-78 and C5a on day 1, IL-8 and GRO-α on days 3-7, and NGAL and MPO on days 1-3 were significant. CONCLUSION: These neutrophil chemoattractants might be serially involved in the infiltration of neutrophils into the CSF after SAH. Migrated neutrophils play an important role in inflammatory reactions in the central nervous system after SAH.


Assuntos
Fatores Quimiotáticos/líquido cefalorraquidiano , Quimiotaxia de Leucócito/fisiologia , Infiltração de Neutrófilos/fisiologia , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
J Pediatr Surg ; 56(7): 1103-1106, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896616

RESUMO

PURPOSE: Pneumothorax often develops in patients with Marfan syndrome (MFS). Here, we examined the effects of conservative and surgical pneumothorax treatments in children with MFS. METHODS: In this study, 23 patients, less than 20 years old, diagnosed with both MFS and pneumothorax between 1999 and 2019 were included. All data were collected retrospectively from patients' medical records. RESULTS: In total, 18 of 23 patients (78%) had relapsed pneumothorax either on the ipsilateral or contralateral side. Among these 18 patients, 6 (26%) patients had multiple relapses. Conservative and surgical treatments of pneumothorax were attempted in 33 and 29 lungs, respectively. The conservative treatment was attempted as a definitive therapy in 21 lungs. Twelve conservative treatments (57%) failed, which required surgical intervention. In 9 lungs (43%) with successful conservative treatment, 6 (67%) had ipsilateral relapses. In contrast to the above findings, only 4 (13%) ipsilateral relapses were observed in 29 surgical treatments. CONCLUSIONS: Our study revealed a low response and high relapse rate when MFS adolescents who diagnosed pneumothorax were subjected to the conservative treatment modality. Thus, we recommend surgical intervention as the first line of therapy to treat pneumothorax in adolescents diagnosed with MFS. LEVEL OF EVIDENCE: Ⅲ (Treatment Study).


Assuntos
Síndrome de Marfan , Pneumotórax , Adolescente , Adulto , Criança , Humanos , Síndrome de Marfan/complicações , Pneumotórax/etiologia , Pneumotórax/cirurgia , Recidiva , Estudos Retrospectivos , Cirurgia Torácica Vídeoassistida , Resultado do Tratamento , Adulto Jovem
10.
Drug Discov Ther ; 15(1): 28-34, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33627575

RESUMO

We have already reported that ovariectomized (OVX) rats reduced the spontaneous activity during the dark period due to the decease of serotonin release in the amygdala. In this study, we examined the potential of sertraline, a selective serotonin reuptake inhibitor, on the recovery of less spontaneous activity seen in mice with OVX-induced despair-like behaviors. Female 9-week old ICR mice were underwent either OVX or sham surgery. Sertraline (10 mg/kg/day, s.c.) or saline were started to administer to each group for 8 weeks (6 times/week) from the 8th week after OVX. Each spontaneous activity of mouse was evaluated during the dark period (19:00-07:00) using an infrared sensor. Moreover, mRNA expression levels of tryptophan hydroxylase (TPH) and X-box binding protein 1 (XBP1) were measured in the hippocampus and prefrontal cortex using by a real-time PCR method. We found out that the OVX-induced despair-like behaviors were improved by the continuous administration of sertraline. After treatment of OVX, our real-time PCR data showed that sertraline significantly suppressed the upregulation of XBP1 expression levels in both hippocampus and prefrontal cortex, although this suppression of the downregulation of TPH expression levels was seen in only hippocampus. These results suggest that sertraline improves the decrease in spontaneous activity induced by OVX assessed by the hippocampus suppressing decreased serotonin synthesis in the serotonergic neuron.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Camundongos Endogâmicos ICR , Modelos Animais , Ovariectomia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Sertralina/administração & dosagem , Regulação para Cima/efeitos dos fármacos
11.
J Allergy Clin Immunol ; 147(5): 1878-1891, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465368

RESUMO

BACKGROUND: Mast cells (MCs) are key regulators of IgE-mediated allergic inflammation. Cell-derived extracellular vesicles (EVs) contain bioactive compounds such as microRNAs. EVs can transfer signals to recipient cells, thus using a novel mechanism of cell-to-cell communication. However, whether MC-derived EVs are involved in FcεRI-mediated allergic inflammation is unclear. OBJECTIVE: We sought to investigate the effect of EVs derived from FcεRI-aggregated human MCs on the function of human group 2 innate lymphoid cells (ILC2s). METHODS: Human cultured MCs were sensitized with and without IgE for 1 hour and then incubated with anti-IgE antibody, IL-33, or medium alone for 24 hours. EVs in the MC supernatant were isolated by using ExoQuick-TC. RESULTS: Coculture of ILC2s with EVs derived from the FcεRI-aggregated MCs significantly enhanced IL-5 production and sustained upregulation of IL-5 mRNA expression in IL-33-stimulated ILC2s, but IL-13 production and IL-13 mRNA expression were unchanged. miR103a-3p expression was upregulated in IL-33-stimulated ILC2s that had been cocultured with EVs derived from anti-IgE antibody-stimulated MCs. Transduction of an miR103a-3p mimic to ILC2s significantly enhanced IL-5 production by IL-33-stimulated ILC2s. miR103a-3p promoted demethylation of an arginine residue of GATA3 by downregulating protein arginine methyltransferase 5 (PRMT5) mRNA. Reduction of protein arginine methyltransferase 5 expression in ILC2s by using a small interfering RNA technique resulted in upregulation of IL-5 production by IL-33-stimulated ILC2s. Furthermore, the level of miR103a-3p expression was significantly higher in EVs from sera of patients with atopic dermatitis than in EVs from nonatopic healthy control subjects. CONCLUSION: Eosinophilic allergic inflammation may be exacerbated owing to ILC2 activation by MC-derived miR103a-3p.


Assuntos
Citocinas/imunologia , Vesículas Extracelulares/imunologia , Linfócitos/imunologia , Mastócitos/imunologia , MicroRNAs/imunologia , Receptores de IgE/imunologia , Adulto , Idoso , Células Cultivadas , Dermatite Atópica/imunologia , Eosinófilos/imunologia , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Pediatr Surg Int ; 37(2): 267-273, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388953

RESUMO

PURPOSE: This study aimed to investigate the optimal indication and availability of prophylactic innominate artery transection (PIAT). METHODS: We retrospectively analyzed the medical records of the patients with neurological or neuromuscular disorders (NMDs) who underwent PIAT. Meanwhile, we originally defined the tracheal flatting ratio (TFR) and mediastinum-thoracic anteroposterior ratio (MTR) from preoperative chest computed tomography imaging and compared these parameters between non-PIAT and PIAT group. RESULTS: There were 13 patients who underwent PIAT. The median age was 22 years. PIAT was planned before in one, simultaneously in five, and after tracheostomy or laryngotracheal separation in seven patients. Image evaluations of the brain to assess circle of Willis were performed in all patients. Appropriate skin incisions with sternotomy to expose the innominate artery were made in four patients. All patients are still alive except one late death without any association with PIAT. No neurological complications occurred in any patients. As significant differences (p < 0.01) between two groups were observed for TFR and MTR, objective validity of the indication of PIAT was found. CONCLUSIONS: PIAT is safe and tolerable in case of innominate artery compression of the trachea with NMDs. TFR and MTR are useful objective indexes to judge the indication of PIAT.


Assuntos
Tronco Braquiocefálico/cirurgia , Fístula/prevenção & controle , Traqueia/cirurgia , Doenças da Traqueia/cirurgia , Procedimentos Cirúrgicos Vasculares/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
13.
J Neurotrauma ; 38(14): 1979-1987, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497585

RESUMO

Chronic subdural hematoma (CSDH) is considered an angiogenic and inflammatory disease. Chemokines attract leukocytes, and invading neutrophils and monocytes/macrophages play important roles in wound healing. However, no studies have been reported regarding changes in expression of chemokines in CSDH fluid after trepanation surgery. We randomly divided patients who underwent trepanation surgery into two groups. One was the irrigation group, in which irrigation of CSDH fluids was performed and a drainage tube was placed (n = 10). The other was the non-irrigation group, in which a drainage tube was inserted without irrigation (n = 10). CSDH fluids were collected during the trepanation surgery, immediately after surgery and on day 1 through the drainage tube. The concentrations of interleukin-8 (IL-8), growth-regulated oncogene-α (GRO-α), epithelial neutrophil-activating peptide 78 (ENA-78), monocyte chemoattractant protein-1 (MCP-1), interferon-γ-induced protein-10 (IP-10), tissue plasminogen activator (tPA), von Willebrand factor (vWF), eotaxin-3, and myeloperoxidase (MPO) in each CSDH fluid sample were measured using enzyme-linked immunosorbent assay kits. After irrigation, concentrations of all chemokines decreased. However, concentrations of IL-8, GRO-α, ENA-78, MCP-1, and MPO were significantly increased on day 1 compared with concentrations during surgery with or without irrigation. In contrast, there were no changes in concentrations of IP-10, eotaxin-3, tPA, or vWF after trepanation surgery. Moreover, there were significant relationships among concentrations of IL-8, GRO-α, ENA-78, and MCP-1 during the surgery and on day 1. In CSDH fluids, chemokines that attract neutrophils, such as IL-8, GRO-α, ENA-78, and macrophage-attracting MCP-1, appear first after trepanation surgery, whereas lymphocyte-attracting IP-10 and eosinophil-attracting eotaxin-3 levels do not change within 1 day of surgery. These findings suggest that neutrophils and macrophages may play important roles in the healing process of CSDH at an early stage.


Assuntos
Quimiocinas/metabolismo , Hematoma Subdural Crônico/metabolismo , Hematoma Subdural Crônico/cirurgia , Trepanação , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Drenagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Irrigação Terapêutica , Fatores de Tempo
14.
Curr Mol Pharmacol ; 14(2): 245-252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32351191

RESUMO

BACKGROUND: Decreases in female hormones not only affect bone metabolism and decrease bone mass, but also affect the central nervous system, causing brain disorders such as depression and dementia. Administration of estradiol by hormone replacement therapy can improve dementia, while reduced estradiol in ovariectomized (OVX) model rats can reduce both bone density and locomotor activity. The antidepressant fluvoxamine, which is widely used in clinical practice, can improve this effect on locomotor reduction. Similarly, lactoferrin (LF) can reportedly improve inhibitory locomotion due to stress. OBJECTIVE: In this study, we examined the effect of LF on neurite outgrowth in vitro and in vivo using PC12 cells and rats, respectively. METHODS: We performed an in vivo study in which 8-week-old female OVX rats were administered LF five days a week for 6 weeks from the day after surgery. After administration was completed, spontaneous locomotor activity in the dark period, immobility time in a forced swim test, and release amount of dopamine and serotonin in the brain were measured. RESULTS: LF was found to have a neurite outgrowth function in PC12 cells. Moreover, LF was found to improve OVX-induced decreases in locomotor activity and increases in immobility time in the forced swim test. Furthermore, the administration of LF elicited significant recovery of decreased dopamine and serotonin release in the brains of OVX group rats. CONCLUSION: These results strongly suggest that LF improved OVX-induced decreases in momentum during the dark period and, moreover, that release of dopamine and serotonin in the brain was involved in this effect.


Assuntos
Antidepressivos/farmacologia , Dopamina/metabolismo , Lactoferrina/farmacologia , Locomoção/efeitos dos fármacos , Serotonina/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Antidepressivos/metabolismo , Encéfalo , Modelos Animais de Doenças , Feminino , Humanos , Lactoferrina/metabolismo , Atividade Motora/efeitos dos fármacos , Células PC12 , Ratos , Ratos Wistar , Natação
15.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228180

RESUMO

Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/genética , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Doença de Huntington/enzimologia , Doença de Huntington/genética , Doença de Huntington/patologia , Óxido Nítrico Sintase Tipo I/genética , Oxirredução , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
16.
iScience ; 23(11): 101727, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205029

RESUMO

Most triacylglycerol-lowering fibrates have been developed in the 1960s-1980s before their molecular target, peroxisome proliferator-activated receptor alpha (PPARα), was identified. Twenty-one ligand-bound PPARα structures have been deposited in the Protein Data Bank since 2001; however, binding modes of fibrates and physiological ligands remain unknown. Here we show thirty-four X-ray crystallographic structures of the PPARα ligand-binding domain, which are composed of a "Center" and four "Arm" regions, in complexes with five endogenous fatty acids, six fibrates in clinical use, and six synthetic PPARα agonists. High-resolution structural analyses, in combination with coactivator recruitment and thermostability assays, demonstrate that stearic and palmitic acids are presumably physiological ligands; coordination to Arm III is important for high PPARα potency/selectivity of pemafibrate and GW7647; and agonistic activities of four fibrates are enhanced by the partial agonist GW9662. These results renew our understanding of PPARα ligand recognition and contribute to the molecular design of next-generation PPAR-targeted drugs.

17.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121174

RESUMO

Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is highly abundant in the brain and exhibits broad substrate specificity, thereby it is thought to participate in the regulation of neuronal death and survival. Nitric oxide (NO), produced by neuronal NO synthase (nNOS), is an important neurotransmitter and plays a role in neuronal activity including learning and memory processes. However, high levels of NO can contribute to excitotoxicity following a stroke and neurodegenerative disease. Aside from NO, nNOS also generates superoxide which is involved in both cell injury and signaling. CaMKII is known to activate and translocate from the cytoplasm to the post-synaptic density in response to neuronal activation where nNOS is predominantly located. Phosphorylation of nNOS at Ser847 by CaMKII decreases NO generation and increases superoxide generation. Conversely, NO-induced S-nitrosylation of CaMKII at Cys6 is a prominent determinant of the CaMKII inhibition in ATP competitive fashion. Thus, the "cross-talk" between CaMKII and NO/superoxide may represent important signal transduction pathways in brain. In this review, we introduce the molecular mechanism of and pathophysiological role of mutual regulation between CaMKII and nNOS in neurons.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Citoplasma/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/química , Fosforilação , Serina/metabolismo
18.
PLoS One ; 15(6): e0233643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479555

RESUMO

Chronic subdural hematoma (CSDH) is an angiogenic and inflammatory disease. Toll-like receptors (TLRs) transduce intracellular signals, resulting in the activation of nuclear factor κB (NF-κB), which leads to the production of inflammatory cytokines. High-mobility group box 1 (HMGB1) functions as a mediator of inflammatory responses through TLRs. In this study, we examined the expression of HMGB1 and components of the Toll-like receptor and NF-κB signaling pathways in the outer membrane of CSDH. Eight patients whose outer membrane was successfully obtained during trepanation surgery were included in this study. The expression of TLR4, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 4 (IRAK4), TNF receptor-associated factor 6 (TRAF6), TGFß-activated kinase 1 (Tak1), interferon regulatory factors 3 (IRF3), IκB kinase ß (IKKß), IKKγ, IκBε, IκBα, NF-κB/p65 and ß-actin was examined by Western blot analysis. The expression of TLR4, NF-κB/p65 and interleukin-6 (IL-6) was also examined by immunohistochemistry. The concentrations of HMGB1 and IL-6 in CSDH fluids were measured using ELISA kits. Above-mentioned molecules were detected in all cases. In addition, TLR4, NF-κB/p65 and IL-6 were localized in the endothelial cells of vessels within CSDH outer membranes. The concentrations of HMGB1 and IL-6 in CSDH fluids were significantly higher than that in the CSF and serum. There existed a correlation between the concentrations of HMGB1 and IL-6 in CSDH fluids. Our data suggest that HMGB1 in CSDH fluids produces the inflammatory cytokine IL-6 in endothelial cells through the Toll-like receptor and NF-κB signaling pathways. Anti-HMGB1 therapy might be a useful method to treat the growth of CSDH.


Assuntos
Proteína HMGB1/metabolismo , Hematoma Subdural Crônico/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Idoso , Idoso de 80 Anos ou mais , Endotélio Vascular/metabolismo , Feminino , Proteína HMGB1/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética
19.
Structure ; 28(7): 799-809.e5, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402247

RESUMO

In both prokaryotes and eukaryotes, phosphatidylethanolamine (PE), one of the most abundant membrane phospholipids, plays important roles in various membrane functions and is synthesized through the decarboxylation of phosphatidylserine (PS) by PS decarboxylases (PSDs). However, the catalysis and substrate recognition mechanisms of PSDs remain unclear. In this study, we focused on the PSD from Escherichia coli (EcPsd) and determined the crystal structures of EcPsd in the apo form and PE-bound form at resolutions of 2.6 and 3.6 Å, respectively. EcPsd forms a homodimer, and each protomer has a positively charged substrate binding pocket at the active site. Structure-based mutational analyses revealed that conserved residues in the pocket are involved in PS decarboxylation. EcPsd has an N-terminal hydrophobic helical region that is important for membrane binding, thereby achieving efficient PS recognition. These results provide a structural basis for understanding the mechanism of PE biosynthesis by PSDs.


Assuntos
Carboxiliases/química , Proteínas de Escherichia coli/química , Fosfatidiletanolaminas/biossíntese , Sítios de Ligação , Carboxiliases/genética , Carboxiliases/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Sequência Conservada , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica
20.
Antioxid Redox Signal ; 33(18): 1308-1319, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-32460522

RESUMO

Significance: Calcium ion (Ca2+)/calmodulin (CaM)-dependent protein kinases (CaMKs) are activated by phosphorylation of a crucial threonine residue either by itself (CaMKII) or by upstream kinases, CaMK kinases (CaMKKs) (CaMKI and CaMKIV). CaMKs, present in most mammalian tissues, can phosphorylate many downstream targets, thereby regulating numerous cellular functions. Recent Advances: Aside from canonical post-translational modifications, cysteine-based redox switches in CaMKs affect their enzyme activities. In addition to reactive oxygen species (ROS) and reactive nitrogen species (RNS), reactive sulfur species (RSS) are also recognized as key signaling molecules, regulating protein function through polysulfidation, formation of polysulfides [-S-(S)n-H] on their reactive cysteine residues. To comprehend the biological significance of RSS signaling-related CaMK regulation, here we introduce a novel concept defining CaMKs as RSS targets in stress responses. The stress responses include an irreversible electrophile attack for CaMKI, inflammation for CaMKII, and endoplasmic reticulum stress for CaMKIV. Critical Issues: Development of various human diseases is associated with increased ROS, RNS, and RSS generation. Therefore, depending on specific pathophysiology, RSS could have very particular effects on CaMK functions. Future Directions: How multiple sources and mutual reactions of ROS, RNS, and RSS are coordinated is obscure. Elucidating the mechanisms through applications of enzymology, chemical biology, and mass spectrometry enables to uncover the complexities of redox regulation of CaMK cascades.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sulfetos/metabolismo , Animais , Cisteína/metabolismo , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Humanos , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...