Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783847

RESUMO

Fire shapes animal communities by altering resource availability and species interactions, including between predators and prey. In Australia, there is particular concern that two highly damaging invasive predators, the feral cat (Felis catus) and European red fox (Vulpes vulpes), increase their activity in recently burnt areas and exert greater predation pressure on the native prey due to their increased exposure. We tested how prescribed fire occurrence and extent, along with fire history, vegetation, topography, and distance to anthropogenic features (towns and farms), affected the activity (detection frequency) of cats, foxes, and the native mammal community in south-eastern Australia. We used camera traps to quantify mammal activity before and after a prescribed burn and statistically tested how the fire interacted with these habitat variables to affect mammal activity. We found little evidence that the prescribed fire influenced the activity of cats and foxes and no evidence of an effect on kangaroo or small mammal (<800 g) activity. Medium-sized mammals (800-2000 g) were negatively associated with prescribed fire extent, suggesting that prescribed fire has a negative impact on these species in the short term. The lack of a clear activity increase from cats and foxes is likely a positive outcome from a fire management perspective. However, we highlight that their response is likely dependent upon factors like fire size, severity, and prey availability. Future experiments should incorporate GPS-trackers to record fine-scale movements of cats and foxes in temperate ecosystems immediately before and after prescribed fire to best inform management within protected areas.

2.
Conserv Biol ; 38(3): e14231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38111980

RESUMO

Deserts are often highly biodiverse and provide important habitats for many threatened species. Fire is a dominant disturbance in deserts, and prescribed burning is increasingly being used by conservation managers and Indigenous peoples to mitigate the damaging effects of climate change, invasive plants, and land-use change. The size, severity, and patchiness of fires can affect how animals respond to fire. However, there are almost no studies examining such burn characteristics in desert environments, which precludes the use of such information in conservation planning. Using a before-after control-impact approach with 20 sampling sites, we studied the outcomes of 10 prescribed burns of varying size (5-267 ha), severity, and patchiness to identify which variables best predicted changes in small mammal and reptile species richness and abundance. Three of the 13 species showed a clear response to fire. Captures increased for 2 species (1 mammal, 1 reptile) and decreased for 1 species (a reptile) as the proportional area burned around traps increased. Two other mammal species showed weaker positive responses to fire. Total burn size and burn patchiness were not influential predictors for any species. Changes in capture rates occurred only at sites with the largest and most severe burns. No fire-related changes in capture rates were observed where fires were small and very patchy. Our results suggest that there may be thresholds of fire size or fire severity that trigger responses to fire, which has consequences for management programs underpinned by the patch mosaic burning paradigm. The prescribed burns we studied, which are typical in scale and intensity across many desert regions, facilitated the presence of some taxa and are unlikely to have widespread or persistent negative impacts on small mammal or reptile communities in this ecosystem provided that long unburned habitat harboring threatened species is protected.


Prueba experimental de la respuesta animal al tamaño y gravedad de los incendios controlados Resumen Los desiertos suelen contar con mucha biodiversidad y proporcionar hábitats importantes para una variedad de especies amenazadas. El fuego es una perturbación que domina en los desiertos, y los incendios controlados cada vez se usan más por los gestores de la conservación y los pueblos indígenas para mitigar los efectos dañinos del cambio climático, las plantas invasoras y el cambio de uso de suelo. El tamaño, gravedad y fragmentación de los incendios pueden afectar cómo los animales responden al fuego. Sin embargo, casi no existen estudios que analicen dichas características de la quema en los ambientes desérticos, lo que excluye a dicha información de la planeación de la conservación. Usamos una estrategia de antes­después del control­impacto en 20 sitios de muestreo para estudiar los resultados de diez incendios controlados de diferentes tamaños (5­267 ha), gravedad y fragmentación para identificar cuáles variables pronostican mejor los cambios en la riqueza de especies y abundancia de mamíferos pequeños y reptiles. Tres de las 13 especies mostraron una respuesta clara al incendio. Las capturas incrementaron en dos especies (una de mamífero y una de reptil) y disminuyeron en una especie (un reptil) conforme incrementó el área proporcional incendiada alrededor de las trampas. Otras dos especies de mamíferos mostraron respuestas positivas más débiles ante el fuego. El tamaño total y la fragmentación del incendio no fueron influyentes sobre los pronosticadores de cualquier especie. Los cambios en las tasas de captura ocurrieron solamente en los sitios con los incendios más graves y grandes. No observamos cambios relacionados al incendio en las tasas de captura en donde los incendios fueron pequeños y muy fragmentados. Nuestros resultados sugieren que podría haber umbrales del tamaño o gravedad del incendio que provocan las respuestas al fuego, lo que tiene consecuencias para los programas de manejo sustentados en el paradigma del mosaico de fragmentos del incendio. Los incendios controlados que estudiamos, que son típicos en escala e intensidad en muchas regiones desérticas, facilitaron la presencia de algunos taxones y no tuvieron probabilidad de tener un impacto negativo extenso o persistente sobre las comunidades de mamíferos pequeños y reptiles en este ecosistema, siempre y cuando se proteja el hábitat que lleva mucho tiempo sin incendios y en donde viven las especies amenazadas.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Mamíferos , Répteis , Animais , Conservação dos Recursos Naturais/métodos , Mamíferos/fisiologia , Répteis/fisiologia , Clima Desértico , Biodiversidade , Ecossistema
3.
Biol Rev Camb Philos Soc ; 97(4): 1539-1558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35320881

RESUMO

Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator-prey interactions is fragmented and has not been synthesised. Here, we review and synthesise knowledge of how fire influences predator and prey behaviour and interactions. We develop a conceptual model based on predator-prey theory and empirical examples to address four key questions: (i) how and why do predators respond to fire; (ii) how and why does prey vulnerability change post-fire; (iii) what mechanisms do prey use to reduce predation risk post-fire; and (iv) what are the outcomes of predator-fire interactions for prey populations? We then discuss these findings in the context of wildlife conservation and ecosystem management before outlining priorities for future research. Fire-induced changes in vegetation structure, resource availability, and animal behaviour influence predator-prey encounter rates, the amount of time prey are vulnerable during an encounter, and the conditional probability of prey death given an encounter. How a predator responds to fire depends on fire characteristics (e.g. season, severity), their hunting behaviour (ambush or pursuit predator), movement behaviour, territoriality, and intra-guild dynamics. Prey species that rely on habitat structure for avoiding predation often experience increased predation rates and lower survival in recently burnt areas. By contrast, some prey species benefit from the opening up of habitat after fire because it makes it easier to detect predators and to modify their behaviour appropriately. Reduced prey body condition after fire can increase predation risk either through impaired ability to escape predators, or increased need to forage in risky areas due to being energetically stressed. To reduce risk of predation in the post-fire environment, prey may change their habitat use, increase sheltering behaviour, change their movement behaviour, or use camouflage through cryptic colouring and background matching. Field experiments and population viability modelling show instances where fire either amplifies or does not amplify the impacts of predators on prey populations, and vice versa. In some instances, intense and sustained post-fire predation may lead to local extinctions of prey populations. Human disruption of fire regimes is impacting faunal communities, with consequences for predator and prey behaviour and population dynamics. Key areas for future research include: capturing data continuously before, during and after fires; teasing out the relative importance of changes in visibility and shelter availability in different contexts; documenting changes in acoustic and olfactory cues for both predators and prey; addressing taxonomic and geographic biases in the literature; and predicting and testing how changes in fire-regime characteristics reshape predator-prey interactions. Understanding and managing the consequences for predator-prey communities will be critical for effective ecosystem management and species conservation in this era of global change.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento Animal , Dinâmica Populacional , Comportamento Predatório
4.
Biol Rev Camb Philos Soc ; 96(6): 2735-2754, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269510

RESUMO

Artificial refuges are human-made structures that aim to create safe places for animals to breed, hibernate, or take shelter in lieu of natural refuges. Artificial refuges are used across the globe to mitigate the impacts of a variety of threats on wildlife, such as habitat loss and degradation. However, there is little understanding of the science underpinning artificial refuges, and what comprises best practice for artificial refuge design and implementation for wildlife conservation. We address this gap by undertaking a systematic review of the current state of artificial refuge research for the conservation of wildlife. We identified 224 studies of artificial refuges being implemented in the field to conserve wildlife species. The current literature on artificial refuges is dominated by studies of arboreal species, primarily birds and bats. Threatening processes addressed by artificial refuges were biological resource use (26%), invasive or problematic species (20%), and agriculture (15%), yet few studies examined artificial refuges specifically for threatened (Vulnerable, Endangered, or Critically Endangered) species (7%). Studies often reported the characteristics of artificial refuges (i.e. refuge size, construction materials; 87%) and surrounding vegetation (35%), but fewer studies measured the thermal properties of artificial refuges (18%), predator activity (17%), or food availability (3%). Almost all studies measured occupancy of the artificial refuges by target species (98%), and over half measured breeding activity (54%), whereas fewer included more detailed measures of fitness, such as breeding productivity (34%) or animal body condition (4%). Evaluating the benefits and impacts of artificial refuges requires sound experimental design, but only 39% of studies compared artificial refuges to experimental controls, and only 10% of studies used a before-after-control-impact (BACI) design. As a consequence, few studies of artificial refuges can determine their overall effect on individuals or populations. We outline a series of key steps in the design, implementation, and monitoring of artificial refuges that are required to avoid perverse outcomes and maximise the chances of achieving conservation objectives. This review highlights a clear need for increased rigour in studies of artificial refuges if they are to play an important role in wildlife conservation.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Aves , Ecossistema , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...