Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502443

RESUMO

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Assuntos
Clostridium botulinum tipo E/enzimologia , Endopeptidases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Clostridium/efeitos dos fármacos , Clostridium/ultraestrutura , Endopeptidases/química , Endopeptidases/isolamento & purificação , Endopeptidases/farmacologia , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Prófagos/enzimologia , Ácidos Teicoicos/metabolismo
2.
Antibiotics (Basel) ; 8(3)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546935

RESUMO

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.

3.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010898

RESUMO

Clostridium perfringens, a spore-forming anaerobic bacterium, causes food poisoning and gas gangrene in humans and is an agent of necrotizing enteritis in poultry, swine and cattle. Endolysins are peptidoglycan hydrolases from bacteriophage that degrade the bacterial host cell wall causing lysis and thus harbor antimicrobial therapy potential. The genes for the PlyCP10 and PlyCP41 endolysins were found in prophage regions of the genomes from C. perfringens strains Cp10 and Cp41, respectively. The gene for PlyCP10 encodes a protein of 351 amino acids, while the gene for PlyCP41 encodes a protein of 335 amino acids. Both proteins harbor predicted glycosyl hydrolase domains. Recombinant PlyCP10 and PlyCP41 were expressed in E. coli with C-terminal His-tags, purified by nickel chromatography and characterized in vitro. PlyCP10 activity was greatest at pH 6.0, and between 50 and 100 mM NaCl. PlyCP41 activity was greatest between pH 6.5 and 7.0, and at 50 mM NaCl, with retention of activity as high as 600 mM NaCl. PlyCP10 lost most of its activity above 42°C, whereas PlyCP41 survived at 50°C for 30 min and still retained >60% activity. Both enzymes had lytic activity against 75 C. perfringens strains (isolates from poultry, swine and cattle) suggesting therapeutic potential.


Assuntos
Bacteriófagos/enzimologia , Clostridium perfringens/efeitos dos fármacos , Endopeptidases/química , Endopeptidases/farmacologia , Gangrena Gasosa/veterinária , Prófagos/enzimologia , Proteínas Virais/química , Proteínas Virais/farmacologia , Animais , Bacteriólise , Bacteriófagos/química , Bacteriófagos/classificação , Bacteriófagos/genética , Bovinos , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/fisiologia , Endopeptidases/genética , Endopeptidases/metabolismo , Estabilidade Enzimática , Gangrena Gasosa/microbiologia , Gangrena Gasosa/terapia , Concentração de Íons de Hidrogênio , Filogenia , Aves Domésticas , Prófagos/química , Prófagos/classificação , Prófagos/genética , Domínios Proteicos , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...