Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Med Chem ; 66(19): 13384-13399, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774359

RESUMO

Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.

2.
J Med Chem ; 65(2): 1458-1480, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34726887

RESUMO

CDK7 has emerged as an exciting target in oncology due to its roles in two important processes that are misregulated in cancer cells: cell cycle and transcription. This report describes the discovery of SY-5609, a highly potent (sub-nM CDK7 Kd) and selective, orally available inhibitor of CDK7 that entered the clinic in 2020 (ClinicalTrials.gov Identifier: NCT04247126). Structure-based design was leveraged to obtain high selectivity (>4000-times the closest off target) and slow off-rate binding kinetics desirable for potent cellular activity. Finally, incorporation of a phosphine oxide as an atypical hydrogen bond acceptor helped provide the required potency and metabolic stability. The development candidate SY-5609 displays potent inhibition of CDK7 in cells and demonstrates strong efficacy in mouse xenograft models when dosed as low as 2 mg/kg.


Assuntos
Neoplasias da Mama , Ciclo Celular , Quinases Ciclina-Dependentes , Descoberta de Drogas , Inibidores de Proteínas Quinases , Animais , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Methods Mol Biol ; 2342: 113-145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272693

RESUMO

The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system(s) under investigation. As a consequence, the apparent kinetic parameters, such as Km or Ki, that are derived can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components which can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.


Assuntos
Proteínas Sanguíneas/metabolismo , Preparações Farmacêuticas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Cinética , Ligação Proteica
4.
Pharm Res ; 36(2): 30, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593605

RESUMO

According to the free drug hypothesis only the unbound drug is available to act at physiological sites of action, and as such the importance of plasma protein binding primarily resides in its impact on pharmacokinetics and pharmacodynamics. Of the major plasma proteins, alpha-1-acid glycoprotein (AAG) represents an intriguing one primarily due to the high affinity, low capacity properties of this protein. In addition, there are marked species and age differences in protein expression, homology and drug binding affinity. As such, a thorough understanding of drug binding to AAG can help aid and improve the translation of pharmacokinetic/pharmacodynamic (PK/PD) relationships from preclinical species to human as well as adults to neonates. This review provides a comprehensive overview of our current understanding of the biochemistry of AAG; endogenous function, impact of disease, utility as a biomarker, and impact on PK/PD. Experimental considerations are discussed as well as recommendations for understanding the potential impact of AAG on PK through drug discovery and early development.


Assuntos
Orosomucoide/metabolismo , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Descoberta de Drogas , Humanos , Farmacocinética , Ligação Proteica , Especificidade da Espécie
5.
PLoS One ; 13(6): e0197372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856759

RESUMO

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinogênese/genética , Histona-Lisina N-Metiltransferase/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
6.
Blood ; 131(24): 2661-2669, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29724899

RESUMO

Pinometostat (EPZ-5676) is a first-in-class small-molecule inhibitor of the histone methyltransferase disrupter of telomeric silencing 1-like (DOT1L). In this phase 1 study, pinometostat was evaluated for safety and efficacy in adult patients with advanced acute leukemias, particularly those involving mixed lineage leukemia (MLL) gene rearrangements (MLL-r) resulting from 11q23 translocations. Fifty-one patients were enrolled into 6 dose-escalation cohorts (n = 26) and 2 expansion cohorts (n = 25) at pinometostat doses of 54 and 90 mg/m2 per day by continuous intravenous infusion in 28-day cycles. Because a maximum tolerated dose was not established in the dose-escalation phase, the expansion doses were selected based on safety and clinical response data combined with pharmacodynamic evidence of reduction in H3K79 methylation during dose escalation. Across all dose levels, plasma pinometostat concentrations increased in an approximately dose-proportional fashion, reaching an apparent steady-state by 4-8 hours after infusion, and rapidly decreased following treatment cessation. The most common adverse events, of any cause, were fatigue (39%), nausea (39%), constipation (35%), and febrile neutropenia (35%). Overall, 2 patients, both with t(11;19), experienced complete remission at 54 mg/m2 per day by continuous intravenous infusion, demonstrating proof of concept for delivering clinically meaningful responses through targeting DOT1L using the single agent pinometostat in MLL-r leukemia patients. Administration of pinometostat was generally safe, with the maximum tolerated dose not being reached, although efficacy as a single agent was modest. This study demonstrates the therapeutic potential for targeting DOT1L in MLL-r leukemia and lays the groundwork for future combination approaches in this patient population. This clinical trial is registered at www.clinicaltrials.gov as NCT01684150.


Assuntos
Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Histonas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Metiltransferases/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Benzimidazóis/efeitos adversos , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
7.
Sci Rep ; 7(1): 17993, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269946

RESUMO

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Guanilato Ciclase/antagonistas & inibidores , Isoxazóis/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Pirimidinas/uso terapêutico , Compostos de Espiro/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Humanos , Técnicas In Vitro , Isoxazóis/farmacocinética , Masculino , Camundongos , Transplante de Neoplasias , Pirimidinas/farmacocinética , Ratos Sprague-Dawley , Compostos de Espiro/farmacocinética
8.
Mol Cancer Ther ; 16(8): 1669-1679, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28428443

RESUMO

DOT1L is a protein methyltransferase involved in the development and maintenance of MLL-rearranged (MLL-r) leukemia through its ectopic methylation of histones associated with well-characterized leukemic genes. Pinometostat (EPZ-5676), a selective inhibitor of DOT1L, is in clinical development in relapsed/refractory acute leukemia patients harboring rearrangements of the MLL gene. The observation of responses and subsequent relapses in the adult trial treating MLL-r patients motivated preclinical investigations into potential mechanisms of pinometostat treatment-emergent resistance (TER) in cell lines confirmed to have MLL-r. TER was achieved in five MLL-r cell lines, KOPN-8, MOLM-13, MV4-11, NOMO-1, and SEM. Two of the cell lines, KOPN-8 and NOMO-1, were thoroughly characterized to understand the mechanisms involved in pinometostat resistance. Unlike many other targeted therapies, resistance does not appear to be achieved through drug-induced selection of mutations of the target itself. Instead, we identified both drug efflux transporter dependent and independent mechanisms of resistance to pinometostat. In KOPN-8 TER cells, increased expression of the drug efflux transporter ABCB1 (P-glycoprotein, MDR1) was the primary mechanism of drug resistance. In contrast, resistance in NOMO-1 cells occurs through a mechanism other than upregulation of a specific efflux pump. RNA-seq analysis performed on both parental and resistant KOPN-8 and NOMO-1 cell lines supported two unique candidate pathway mechanisms that may explain the pinometostat resistance observed in these cell lines. These results are the first demonstration of TER models of the DOT1L inhibitor pinometostat and may provide useful tools for investigating clinical resistance. Mol Cancer Ther; 16(8); 1669-79. ©2017 AACR.


Assuntos
Benzimidazóis/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Benzimidazóis/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Drug Metab Dispos ; 45(5): 492-496, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254953

RESUMO

Quantification of metabolites by mass spectrometry in the absence of authentic reference standards or without a radiolabel is often called "semiquantitative," which acknowledges that mass spectrometric responses are not truly quantitative. For many researchers, it is tempting to pursue this practice of semiquantification in early drug discovery and even preclinical development, when radiolabeled absorption, distribution, metabolism, and excretion studies are being deferred to later stages of drug development. The caveats of quantifying metabolites based on parent drug response are explored in this investigation. A set of 71 clinically relevant drugs/metabolites encompassing common biotransformation pathways was subjected to flow injection analysis coupled with electrospray ionization (ESI) mass spectrometry. The results revealed a large variation in ESI response even for structurally similar parent drug/metabolite pairs. The ESI response of each metabolite was normalized to that of the parent drug to generate an ESI relative response factor. Overall, relative response factors ranged from 0.014 (>70-fold lower response than parent) to 8.6 (8.6-fold higher response than parent). Various two-dimensional molecular descriptors were calculated that describe physicochemical, topological, and structural properties for each drug/metabolite. The molecular descriptors, along with the ESI response factors, were used in univariate analyses as well as a principal components analysis to ascertain which molecular descriptors best account for the observed discrepancies in drug/metabolite ESI response. This investigation has shown that the practice of using parent drug response to quantify metabolites should be used with caution.


Assuntos
Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Biotransformação , Calibragem , Humanos , Redes e Vias Metabólicas , Preparações Farmacêuticas/química , Análise de Componente Principal , Padrões de Referência , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização por Electrospray/normas
10.
Eur J Drug Metab Pharmacokinet ; 42(6): 891-901, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28229434

RESUMO

Acute leukemias bearing mixed lineage leukemia (MLL) rearrangements are aggressive diseases characterized by a poor overall prognosis despite multi-agent chemotherapy. Aberrant fusion proteins involving the MLL histone methyltransferase (HMT) lead to recruitment of DOT1L, to a multi-protein complex resulting in aberrant methylation of histone H3 lysine 79 at MLL target genes, and ultimately enhanced expression of critical genes for hematopoietic differentiation, including HOXA9 and MEIS1, and as such defines the established mechanism for leukemogenesis in MLL-rearrangement (MLL-r) leukemias. Pinometostat is a first-in-class, small molecule inhibitor of DOT1L with sub-nanomolar affinity and >37,000 fold selectivity against non-MLL HMTs, and was the first member of the novel HMT inhibitor class to enter Phase 1 clinical trials in both adult and pediatric MLL-r leukemia patients. In this article, the preclinical pharmacokinetics/pharmacodynamics and drug disposition of pinometostat are reviewed including discussion of how these data were used to inform early clinical studies, and how they translated to the clinical experience.


Assuntos
Benzimidazóis/farmacologia , Benzimidazóis/farmacocinética , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzimidazóis/efeitos adversos , Benzimidazóis/uso terapêutico , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos
11.
Xenobiotica ; 47(3): 185-193, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27160567

RESUMO

1. The plasma clearance of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was shown to be markedly lower in human compared to the preclinical species, mouse, rat and dog. 2. This led to vertical allometry where various interspecies scaling methods were applied to the data, with fold-errors between 4 and 13. We had previously reported the elimination and metabolic pathways of EPZ-5676 were similar across species. Therefore, the aim of this work was to explore the mechanistic basis for the species difference in clearance for EPZ-5676, focusing on other aspects of disposition. 3. The protein binding of EPZ-5676 in human plasma demonstrated a non-linear relationship suggesting saturable binding at physiologically relevant concentrations. Saturation of protein binding was not observed in plasma from preclinical species. Kinetic determinations using purified serum albumin and alpha-1-acid glycoprotein (AAG) confirmed that EPZ-5676 is a high affinity ligand for AAG with a dissociation constant (Kd) of 0.24 µM. 4. Permeability limited uptake was also considered since hepatocyte CLint was much lower in human relative to preclinical species. Passive unbound CLint for EPZ-5676 was estimated using a correlation analysis of logD and data previously reported on seven drugs in sandwich cultured human hepatocytes. 5. Incorporation of AAG binding and permeability limited hepatic uptake into the well-stirred liver model gave rise to a predicted clearance for EPZ-5676 within 2-fold of the observed value of 1.4 mL min-1 kg-1. This analysis suggests that the marked species difference in EPZ-5676 clearance is driven by high affinity binding to human AAG as well as species-specific hepatic uptake invoking the role of transporters.


Assuntos
Antineoplásicos/metabolismo , Benzimidazóis/metabolismo , Orosomucoide/metabolismo , Animais , Cães , Hepatócitos/metabolismo , Humanos , Camundongos , Ligação Proteica , Ratos , Especificidade da Espécie
12.
ACS Med Chem Lett ; 7(2): 134-8, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985287

RESUMO

SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies.

13.
ACS Med Chem Lett ; 7(2): 162-6, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985292

RESUMO

The recent publication of a potent and selective inhibitor of protein methyltransferase 5 (PRMT5) provides the scientific community with in vivo-active tool compound EPZ015666 (GSK3235025) to probe the underlying pharmacology of this key enzyme. Herein, we report the design and optimization strategies employed on an initial hit compound with poor in vitro clearance to yield in vivo tool compound EPZ015666 and an additional potent in vitro tool molecule EPZ015866 (GSK3203591).

14.
Drug Metab Dispos ; 44(7): 934-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26936973

RESUMO

Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field.


Assuntos
Antineoplásicos/farmacocinética , Descoberta de Drogas/métodos , Oncologia/métodos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Pediatria/métodos , Adolescente , Idade de Início , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Benzamidas/farmacocinética , Benzimidazóis/farmacocinética , Compostos de Bifenilo , Criança , Pré-Escolar , Aprovação de Drogas , Humanos , Lactente , Recém-Nascido , Morfolinas , Neoplasias/genética , Neoplasias/metabolismo , Farmacogenética , Piridonas/farmacocinética , Estados Unidos , United States Food and Drug Administration , Adulto Jovem
15.
Xenobiotica ; 46(3): 268-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26294260

RESUMO

1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.


Assuntos
Inibidores Enzimáticos/farmacocinética , Éteres Cíclicos/farmacocinética , Isoquinolinas/farmacocinética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/farmacocinética , Animais , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Cães , Hepatócitos/metabolismo , Humanos , Cetoconazol/farmacocinética , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Quinidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
16.
Cancer Chemother Pharmacol ; 77(1): 43-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26645404

RESUMO

PURPOSE: The metabolism and disposition of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was investigated in rat and dog. Metabolite profiles were compared with those from adult patients in the first-in-man phase 1 study as well as the cross-species metabolism observed in vitro. METHODS: EPZ-5676 was administered to rat and dog as a 24-h IV infusion of [(14)C]-EPZ-5676 for determination of pharmacokinetics, mass balance, metabolite profiling and biodistribution by quantitative whole-body autoradiography (QWBA). Metabolite profiling and identification was performed by radiometric and LC-MS/MS analysis. RESULTS: Fecal excretion was the major route of elimination, representing 79 and 81% of the total dose in and rat and dog, respectively. QWBA in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 168 h. Fecal recovery of dose-related material in bile duct-cannulated animals as well as higher radioactivity concentrations in the wall of the large intestine relative to liver implicated intestinal secretion as well as biliary elimination. EPZ-5676 underwent extensive oxidative metabolism with the major metabolic pathways being hydroxylation of the t-butyl group (EPZ007769) and N-dealkylation of the central nitrogen. Loss of adenine from parent EPZ-5676 (M7) was observed only in rat and dog feces, suggesting the involvement of gut microbiota. In rat and dog, steady-state plasma levels of total radioactivity and parent EPZ-5676 were attained rapidly and maintained through the infusion period before declining rapidly on cessation of dosing. Unchanged EPZ-5676 was the predominant circulating species in rat, dog and man. CONCLUSIONS: The excretory and metabolic pathways for EPZ-5676 were very similar across species. Renal excretion of both parent EPZ-5676 and EPZ-5676-related material was low, and in preclinical species fecal excretion of parent EPZ-5676 and EPZ007769 accounted for the majority of drug-related elimination.


Assuntos
Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Fezes/química , Metiltransferases/antagonistas & inibidores , Adulto , Animais , Antineoplásicos/administração & dosagem , Autorradiografia/métodos , Benzimidazóis/administração & dosagem , Cromatografia Líquida/métodos , Cães , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Infusões Intravenosas , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
17.
J Control Release ; 220(Pt B): 758-65, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26385168

RESUMO

Protein methyltransferases are emerging as promising drug targets for therapeutic intervention in human cancers. Pinometostat (EPZ-5676) is a small molecule inhibitor of the DOT1L enzyme, a histone methyltransferase that methylates lysine 79 of histone H3. DOT1L activity is dysregulated in the pathophysiology of rearranged mixed lineage leukemia (MLL-r). Pinometostat is currently in Phase 1 clinical trials in relapsed refractory acute leukemia patients and is administered as a continuous IV infusion (CIV). The studies herein investigated alternatives to CIV administration of pinometostat to improve patient convenience. Various sustained release technologies were considered, and based on the required dose size as well as practical considerations, subcutaneous (SC) bolus administration of a solution formulation was selected for further evaluation in preclinical studies. SC administration offered improved exposure and complete bioavailability of pinometostat relative to CIV and oral administration. These findings warranted further evaluation in rat xenograft models of MLL-r leukemia. SC dosing in xenograft models demonstrated inhibition of MLL-r tumor growth and inhibition of pharmacodynamic markers of DOT1L activity. However, a dosing frequency of thrice daily (t.i.d) was required in these studies to elicit optimal inhibition of DOT1L target genes and tumor growth inhibition. Development of an extended release formulation may prove useful in the further optimization of the SC delivery of pinometostat, moving towards a more convenient dosing paradigm for patients.


Assuntos
Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Metilação de DNA/efeitos dos fármacos , Portadores de Fármacos , Inibidores Enzimáticos/administração & dosagem , Epigênese Genética/efeitos dos fármacos , Leucemia Aguda Bifenotípica/tratamento farmacológico , Metiltransferases/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzimidazóis/sangue , Benzimidazóis/química , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Química Farmacêutica , Preparações de Ação Retardada , Cães , Esquema de Medicação , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Humanos , Infusões Intravenosas , Injeções Subcutâneas , Leucemia Aguda Bifenotípica/enzimologia , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Masculino , Metiltransferases/metabolismo , Camundongos , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Med Chem Lett ; 6(6): 655-9, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26101569

RESUMO

A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.

19.
ACS Med Chem Lett ; 6(5): 491-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005520

RESUMO

Inhibitors of the protein methyltransferase Enhancer of Zeste Homolog 2 (EZH2) may have significant therapeutic potential for the treatment of B cell lymphomas and other cancer indications. The ability of the scientific community to explore fully the spectrum of EZH2-associated pathobiology has been hampered by the lack of in vivo-active tool compounds for this enzyme. Here we report the discovery and characterization of EPZ011989, a potent, selective, orally bioavailable inhibitor of EZH2 with useful pharmacokinetic properties. EPZ011989 demonstrates significant tumor growth inhibition in a mouse xenograft model of human B cell lymphoma. Hence, this compound represents a powerful tool for the expanded exploration of EZH2 activity in biology.

20.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915199

RESUMO

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Linfoma de Célula do Manto/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/enzimologia , Masculino , Metilação , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Pirimidinas/química , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Centrais de snRNP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...