Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(14): 10070-10087, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38533096

RESUMO

This study investigates the viability of using plastic oils derived from High-density polyethylene (HDPE), Polypropylene (PP), and Polystyrene (PS) as alternative fuels for diesel engines. The research focuses on comparing the physical and chemical properties, fuel lubricity, engine performance, combustion characteristics, and exhaust emissions of these plastic oils. Analysis revealed that PS exhibits different fuel properties compared to diesel, with a carbon range distribution similar to gasoline, while HDPE and PP properties closely resemble diesel fuel. To prevent potential engine damage, PS was excluded from engine tests. PP displayed the best fuel lubricity, attributed to its higher kinematic viscosity and sulphur content, reducing direct friction. Diesel followed, with PS and HDPE in decreasing order of lubricity. Diesel's lubricity was influenced by the 7% palmitic methyl ester content in the fuel. In engine tests, HDPE demonstrated BTE similar to diesel, while PP exhibited lower BTE due to combustion retardation, leading to increased energy losses and higher BSFC. The combustion characteristics, in-cylinder pressure, and heat release rate of HDPE closely resembled diesel, while PP showed significantly delayed combustion due to low oxygen content and higher kinematic viscosity. Notably, NOX emissions from PP were lower than diesel and HDPE at all engine loads due to heat losses, resulting in a low in-cylinder temperature unsuitable for NOX emission. HDPE produced higher NOX emissions than diesel at low and middle loads due to its higher H/C ratio, promoting high thermal NOX formation. HC emissions from both HDPE and PP were higher than diesel due to increased fuel supply, hindering chemical bond breakdown. Similarly, CO emissions increased for HDPE and PP due to insufficient time for complete combustion, with HDPE producing more CO due to its heavy composites and lower cetane index. Smoke emissions from both HDPE and PP surpassed diesel, attributed to lower oxygen and higher sulphur content, leading to increased sulphurate particulate matter formation, and lower fuel density referring to the high amount of fuel supplied to the engine.

2.
ACS Omega ; 7(24): 20542-20555, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755399

RESUMO

In the present work, an experimental investigation is carried out on the use of waste plastic oil produced from waste poly(ethylene terephthalate) (PET) bottles (WPOB) as an alternative fuel for diesel engines. The physical and chemical properties of WPOB were analyzed, and it was found that it has fuel properties similar to those of petroleum fuels. The WPOB was tested in a diesel engine to evaluate the effect of WPOB on combustion and emissions characteristics. In addition, particulate matter (PM) emissions generated by the combustion of WPOB were analyzed. The combustion of WPOB was retarded with respect to diesel fuel, resulting in higher carbon-based emissions. The thermogravimetric analysis (TGA) results show that the temperature to reach the maximum rate of soot oxidation was lower with WPOB combustion. Because of the significant delay at the start of combustion and increase in emissions, the direct use of WPOB in the diesel engine is not recommended. It is suggested that WPOB can be used as a blend component to reduce the amount of diesel fuel used in diesel engines. Thus, further study on the effect of diesel fuel blended with WPOB on the combustion and emissions characteristics was performed. The results reveal that the maximum WPOB present in diesel fuel to avoid the increase in carbon-based emissions is 20% by volume to keep combustion and emissions characteristics similar to those of diesel fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...