Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(3): 1393-1404, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38778761

RESUMO

Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.


Assuntos
RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral , Grânulos de Estresse , Humanos , Animais , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , Grânulos de Estresse/metabolismo , SARS-CoV-2/fisiologia , Imunidade Inata , Transdução de Sinais , Condensados Biomoleculares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , DNA Helicases/metabolismo , eIF-2 Quinase/metabolismo , Endorribonucleases/metabolismo , COVID-19/virologia , COVID-19/imunologia
2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585896

RESUMO

Subgenomic flavivirus RNAs (sfRNAs) are structured RNA elements encoded in the 3'-UTR of flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze the production of sfRNAs using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) and super-resolution microscopy during West Nile virus, Zika virus, or Dengue virus serotype 2 infection. We show that sfRNAs are initially localized diffusely in the cytosol or in processing bodies (P-bodies). However, upon activation of the host antiviral endoribonuclease, Ribonuclease L (RNase L), nearly all sfRNAs re-localize to antiviral biological condensates known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a role of RLBs in promoting viral RNA decay, demonstrating the complex host-pathogen interactions at the level of RNA decay and biological condensation.

3.
Virol J ; 21(1): 38, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321453

RESUMO

During viral infection there is dynamic interplay between the virus and the host to regulate gene expression. In many cases, the host induces the expression of antiviral genes to combat infection, while the virus uses "host shut-off" systems to better compete for cellular resources and to limit the induction of the host antiviral response. Viral mechanisms for host shut-off involve targeting translation, altering host RNA processing, and/or inducing the degradation of host mRNAs. In this review, we discuss the diverse mechanisms viruses use to degrade host mRNAs. In addition, the widespread degradation of host mRNAs can have common consequences including the accumulation of RNA binding proteins in the nucleus, which leads to altered RNA processing, mRNA export, and changes to transcription.


Assuntos
Viroses , Vírus , Humanos , Regulação da Expressão Gênica , RNA Mensageiro/genética , Vírus/genética , Antivirais , Replicação Viral
4.
Sci Adv ; 10(5): eadk8152, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295168

RESUMO

G3BP1 is an RNA binding protein that condenses untranslating messenger RNAs into stress granules (SGs). G3BP1 is inactivated by multiple viruses and is thought to antagonize viral replication by SG-enhanced antiviral signaling. Here, we show that neither G3BP1 nor SGs generally alter the activation of innate immune pathways. Instead, we show that the RNAs encoded by West Nile virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 are prone to G3BP1-dependent RNA condensation, which is enhanced by limiting translation initiation and correlates with the disruption of viral replication organelles and viral RNA replication. We show that these viruses counteract condensation of their RNA genomes by inhibiting the RNA condensing function of G3BP proteins, hijacking the RNA decondensing activity of eIF4A, and/or maintaining efficient translation. These findings argue that RNA condensation can function as an intrinsic antiviral mechanism, which explains why many viruses inactivate G3BP proteins and suggests that SGs may have arisen as a vestige of this antiviral mechanism.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , DNA Helicases , RNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Viral , Proteínas com Motivo de Reconhecimento de RNA , Antivirais
5.
Methods Enzymol ; 692: 157-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925178

RESUMO

Ribonuclease L (RNase L) is a mammalian endoribonuclease that initiates the mass degradation of cellular mRNAs in response to double-stranded RNA or viral infection. The kinetic rate of mRNA decay upon RNase L activation has been elusive because RNase L is heterogeneously activated with respect to time in individual cells. Herein, we describe a method using immunofluorescence combined with single-molecule fluorescence in situ hybridization (smFISH) to determine single-cell mRNA decay rates upon RNase L activation. Using these approaches, we deduce that the rate of mRNA decay upon RNase L activation is extremely rapid, whereby the half-life of stable mRNAs such as GAPDH mRNA is reduced to ∼15 minutes in individual cells. This allows for RNase L to degrade nearly every mRNA in a cell in less than 1 hour, which is much faster than the decay rate that would be derived using bulk measurement techniques for mRNA levels, such as qRT-PCR. These single-cell approaches can generally be employed to resolve mRNA decay kinetics in additional contexts.


Assuntos
Endorribonucleases , Estabilidade de RNA , Animais , Hibridização in Situ Fluorescente , Endorribonucleases/genética , Endorribonucleases/metabolismo , Análise de Célula Única , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
6.
J Immunol ; 209(4): 829-839, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896334

RESUMO

Therapeutic Abs directed toward TNF-α display significant immunogenicity in humans, frequently leading to lower serum concentrations of the Ab that are associated with lower treatment efficacy. The enhanced incidence of immunogenicity observed with this class of therapeutics may be mediated by the expression of TNF-α as a homotrimer, both as a soluble serum protein and as a membrane-associated protein (mTNF-α) on the surface of dendritic cells. The TNF-α homotrimer enables the formation of polyvalent Ab-TNF-α immune complexes (ICs) that enhance binding to FcR and neonatal FcR. Polyvalent ICs and Ab bound to mTNF-α on the surface of dendritic cells can internalize, traffic to the lysosomes, and be processed for presentation by MHC molecules. To diminish immunogenicity caused by trafficking of ICs and mTNF-α to the lysosomes, we engineered a monovalent format of adalimumab with pH-sensitive binding to TNF-α. The engineered variant, termed AF-M2637, did not cross-link TNF-α trimers and consequently formed small, nonprecipitating ICs only. AF-M2637 bound TNF-α with high affinity at pH 7.4 (EC50 = 1.1 nM) and displayed a significantly faster dissociation rate than adalimumab at pH 6.0. No immune response to AF-M2637 was detected in mice following a single i.v. dose. In contrast, rapid immunization was detected following the injection of a single i.v. dose of adalimumab, monovalent adalimumab, or the bivalent form of the pH-sensitive variant. These data suggest that ICs and mTNF-α both contribute to the immunogenicity of adalimumab in mice and provide a general strategy for engineering less immunogenic therapeutic TNF-α Abs.


Assuntos
Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Adalimumab , Animais , Complexo Antígeno-Anticorpo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...