Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 20(2): 469-470, 2025 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819051
2.
Mol Neurobiol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955806

RESUMO

Alzheimer's disease (AD) is the most prevalent form of neurodegeneration. Despite the well-established link between tau aggregation and clinical progression, the major pathways driven by this protein to intrinsically damage neurons are incompletely understood. To model AD-relevant neurodegeneration driven by tau, we overexpressed non-mutated human tau in primary mouse neurons and observed substantial axonal degeneration and cell death, a process accompanied by activated caspase 3. Mechanistically, we detected deformation of the nuclear envelope and increased DNA damage response in tau-expressing neurons. Gene profiling analysis further revealed significant alterations in the mitogen-activated protein kinase (MAPK) pathway; moreover, inhibitors of dual leucine zipper kinase (DLK) and c-Jun N-terminal kinase (JNK) were effective in alleviating wild-type human tau-induced neurodegeneration. In contrast, mutant P301L human tau was less toxic to neurons, despite causing comparable DNA damage. Axonal DLK activation induced by wild-type tau potentiated the impact of DNA damage response, resulting in overt neurotoxicity. In summary, we have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between the DLK-MAPK axis and DNA damage response in the neuronal degenerative process.

3.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873342

RESUMO

Chronic demyelination is theorized to contribute to neurodegeneration and drive progressive disability in demyelinating diseases like multiple sclerosis. Here, we describe two genetic mouse models of inducible demyelination, one distinguished by effective remyelination, and the other by remyelination failure and persistent demyelination. By comparing these two models, we find that remyelination protects neurons from apoptosis, improves conduction, and promotes functional recovery. Chronic demyelination of neurons leads to activation of the mitogen-associated protein kinase (MAPK) stress pathway downstream of dual leucine zipper kinase (DLK), which ultimately induces the phosphorylation of c-Jun in the nucleus. Both pharmacological inhibition and CRISPR/Cas9-mediated disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. These findings provide direct experimental evidence that remyelination is neuroprotective and identify DLK inhibition as a potential therapeutic strategy to protect chronically demyelinated neurons.

4.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034690

RESUMO

Previously we showed that neurodegeneration initiated by axonal insults depends in part on the stress-responsive kinase Perk (Larhammar et al., 2017). Here we show that Perk acts primarily through Activating Transcription Factor-4 (Atf4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve injury. Using conditional knockout mice, we find an extensive Perk/Atf4-dependent transcriptional response that includes canonical Atf4 target genes and modest contributions by C/ebp homologous protein (Chop). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that couples regenerative and apoptotic responses. Accordingly, neuronal knockout of Atf4 recapitulates the neuroprotection afforded by Perk deficiency, and Perk or Atf4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor Pten. These findings contrast with the transcriptional and functional consequences reported for CRISPR targeting of Atf4 or Chop and reveal an integral role for Perk/Atf4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.

5.
Res Sq ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945524

RESUMO

Background: Alzheimer's disease (AD) is the most prevalent form of neurodegeneration. Despite the well-established link between tau aggregation and clinical progression, the major pathways driven by this protein to intrinsically damage neurons are incompletely understood. Methods: To model AD-relevant neurodegeneration driven by tau, we overexpressed wild-type human tau in primary mouse neurons and characterized the subsequent cellular and molecular changes. RNAseq profiling and functional investigation were performed as well. A direct comparison with a mutant human tau was conducted in detail. Results: We observed substantial axonal degeneration and cell death associated with wild-type tau, a process accompanied by activated caspase 3. Mechanistically, we detected deformation of the nuclear envelope and increased DNA damage response in tau-expressing neurons. Gene profiling analysis further revealed significant alterations in the mitogen-activated protein kinase (MAPK) pathway; moreover, inhibitors of dual leucine zipper kinase (DLK) and c-Jun N-terminal kinase (JNK) were effective in alleviating wild-type human tau-induced neurodegeneration. In contrast, mutant P301L human tau was less toxic to neurons, despite causing comparable DNA damage. Axonal DLK activation induced by wild-type tau potentiated the impact of DNA damage response, resulting in overt neurotoxicity. Conclusions: We have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between DNA damage response and the MAPK-DLK axis in the neuronal degenerative process.

6.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778383

RESUMO

Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we developed a robust human iPSCbased model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers a wave of mitochondrial fission proceeding from the site of injury to the soma. We demonstrated that mitochondrial fission and resultant cell death is entirely dependent on phosphorylation of dynamin related protein 1 (DRP1) by dual leucine zipper kinase (DLK). Importantly, we show that CRISPR mediated Drp1 depletion protected mouse retinal ganglion neurons from mitochondrial fission and degeneration after optic nerve crush. Our results provide a powerful platform for studying degeneration of human neurons, pinpoint key early events in damage related neural death and new focus for therapeutic intervention.

7.
Curr Opin Neurol ; 31(6): 693-701, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320612

RESUMO

PURPOSE OF REVIEW: The current review analyzes recent findings that suggest that axon degeneration is a druggable process in the treatment of neurodegenerative disorders and a subset of traumas. RECENT FINDINGS: Emerging evidence reveals that axon degeneration is an active and regulated process in the early progression of some neurodegenerative diseases and acute traumas, which is orchestrated through a combination of axon-intrinsic and somatically derived signaling events. The identification of these pathways has presented appealing drug targets whose specificity for the nervous system and phenotypes in mouse models offers significant clinical opportunity. SUMMARY: As the biology of axon degeneration becomes clear, so too has the realization that the pathways driving axon degeneration overlap in part with those that drive neuronal apoptosis and, importantly, axon regeneration. Axon-specific disorders like those seen in CIPN, where injury signaling to the nucleus is not a prominent feature, have been shown to benefit from disruption of Sarm1. In injury and disease contexts, where involvement of somatic events is prominent, inhibition of the MAP Kinase DLK exhibits promise for neuroprotection. Here, however, interfering with somatic signaling may preclude the ability of an axon or a circuit to regenerate or functionally adapt following acute injuries.


Assuntos
Axônios/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos , Regeneração Nervosa , Transdução de Sinais
8.
Annu Rev Pathol ; 13: 93-116, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29414247

RESUMO

From injury to disease to aging, neurons, like all cells, may face various insults that can impact their function and survival. Although the consequences are substantially dictated by the type, context, and severity of insult, distressed neurons are far from passive. Activation of cellular stress responses aids in the preservation or restoration of nervous system function. However, stress responses themselves can further advance neuropathology and contribute significantly to neuronal dysfunction and neurodegeneration. Here we explore the recent advances in defining the cellular stress responses within neurodegenerative diseases and neuronal injury, and we emphasize axonal injury as a well-characterized model of neuronal insult. We highlight key findings and unanswered questions about neuronal stress response pathways, from the initial detection of cellular insults through the underlying mechanisms of the responses to their ultimate impact on the fates of distressed neurons.


Assuntos
Degeneração Neural/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Estresse Fisiológico , Animais , Humanos , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia
9.
Elife ; 62017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440222

RESUMO

The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Degeneração Neural , Neurônios/enzimologia , eIF-2 Quinase/metabolismo , Animais , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , Neurônios/metabolismo
10.
Cold Spring Harb Protoc ; 2014(10): pdb.prot074971, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25275100

RESUMO

This protocol describes the generation of a rapidly myelinating central nervous system coculture for the study of complex neuronal-glial interactions in vitro. Postnatal rat retinal ganglion cells (RGCs) purified by immunopanning are promoted to cluster into reaggregates and then allowed to extend dense beds of radial axons for 10-14 d. Subsequently, rodent oligodendrocyte precursor cells are purified by immunopanning, transfected if desired, and seeded on top of the RGC reaggregates. Under the conditions described here, compact myelin can be observed within 6 d.


Assuntos
Técnicas de Cocultura , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Nervo Óptico/citologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Animais , Antígenos/metabolismo , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dendritos/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Básica da Mielina/metabolismo , Proteoglicanas/metabolismo , Ratos , Células Ganglionares da Retina/citologia , Proteínas tau/metabolismo
11.
Cold Spring Harb Protoc ; 2014(10): pdb.top070839, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25275113

RESUMO

In this article, we introduce methods for generating rapidly myelinating cocultures with reaggregates of purified retinal ganglion cells and optic nerve oligodendrocyte precursor cells. This coculture system facilitates the study of complex central nervous system neuronal-glial interactions and myelination. It enables control of the extracellular environment and allows the use of transfected, virally infected, mutant, or knockout neurons and/or glial cell types. It is therefore possible to assess the role of various signaling pathways and genes in myelination and node of Ranvier formation.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Animais , Antígenos/metabolismo , Axônios/fisiologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Oligodendroglia/citologia , Proteoglicanas/metabolismo , Células-Tronco/citologia , Proteínas tau/metabolismo
12.
J Cell Biol ; 202(5): 747-63, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23979718

RESUMO

Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin-proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults.


Assuntos
Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/patologia , Ubiquitinação , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/patologia , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Peso Molecular , Compressão Nervosa , Fator de Crescimento Neural/farmacologia , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 110(10): 4039-44, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431164

RESUMO

The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of retinal ganglion cells (RGCs) and then in their cell bodies. DLK is required for the majority of gene expression changes in RGCs initiated by injury, including induction of both proapoptotic and regeneration-associated genes. Deletion of DLK in retina results in robust and sustained protection of RGCs from degeneration after optic nerve injury. Despite this improved survival, the number of axons that regrow beyond the injury site is substantially reduced, even when the tumor suppressor phosphatase and tensin homolog (PTEN) is deleted to enhance intrinsic growth potential. These findings demonstrate that these seemingly contradictory responses to injury are mechanistically coupled through a DLK-based damage detection mechanism.


Assuntos
Apoptose/fisiologia , Axônios/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Regeneração Nervosa/fisiologia , Animais , Apoptose/genética , Axônios/patologia , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Transcrição Gênica
14.
Genes Dev ; 24(3): 301-11, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20080941

RESUMO

The controlling factors that prompt mature oligodendrocytes to myelinate axons are largely undetermined. In this study, we used a forward genetics approach to identify a mutant mouse strain characterized by the absence of CNS myelin despite the presence of abundant numbers of late-stage, process-extending oligodendrocytes. Through linkage mapping and complementation testing, we identified the mutation as a single nucleotide insertion in the gene encoding zinc finger protein 191 (Zfp191), which is a widely expressed, nuclear-localized protein that belongs to a family whose members contain both DNA-binding zinc finger domains and protein-protein-interacting SCAN domains. Zfp191 mutants express an array of myelin-related genes at significantly reduced levels, and our in vitro and in vivo data indicate that mutant ZFP191 acts in a cell-autonomous fashion to disrupt oligodendrocyte function. Therefore, this study demonstrates that ZFP191 is required for the myelinating function of differentiated oligodendrocytes.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/embriologia , Embrião de Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação
15.
J Neurosci Res ; 87(15): 3492-501, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19565653

RESUMO

Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central (CNS) and peripheral (PNS) nervous systems. In cultures of Schwann cells (SC) and dorsal root ganglion (DRG) neurons, membrane accumulation of Caspr was detected only after myelination. In contrast, in oligodendrocytes (OL)/DRG neurons cocultures, Caspr was clustered upon initial glial cell contact already before myelination had begun. Premyelination clustering of Caspr was detected in cultures of oligodendrocytes and retinal ganglion cells, motor neurons, and DRG neurons as well as in mixed cell cultures of rat forebrain and spinal cords. Cocultures of oligodendrocyte precursor cells isolated from contactin- or neurofascin-deficient mice with wild-type DRG neurons showed that clustering of Caspr at initial contact sites between OL processes and the axon requires glial expression of NF155 but not of contactin. These results demonstrate that the expression of membrane proteins along the axolemma is determined by the type of the contacting glial cells and is not an intrinsic characteristic of the axon.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Gânglios Espinais/metabolismo , Oligodendroglia/metabolismo , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/ultraestrutura , Moléculas de Adesão Celular Neuronais/genética , Comunicação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/citologia , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/ultraestrutura , Oligodendroglia/citologia , Prosencéfalo/metabolismo , Prosencéfalo/ultraestrutura , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Wistar , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células de Schwann/citologia , Células Receptoras Sensoriais/citologia , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
16.
Cell ; 138(1): 172-85, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596243

RESUMO

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Assuntos
Encéfalo/citologia , Regulação da Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia
17.
Neuron ; 60(4): 555-69, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19038214

RESUMO

Mechanistic studies of CNS myelination have been hindered by the lack of a rapidly myelinating culture system. Here, we describe a versatile CNS coculture method that allows time-lapse microscopy and molecular analysis of distinct stages of myelination. Employing a culture architecture of reaggregated neurons fosters extension of dense beds of axons from purified retinal ganglion cells. Seeding of oligodendrocyte precursor cells on these axons results in differentiation and ensheathment in as few as 3 days, with generation of compact myelin within 6 days. This technique enabled (1) the demonstration that oligodendrocytes initiate new myelin segments only during a brief window early in their differentiation, (2) identification of a contribution of astrocytes to the rate of myelin wrapping, and (3) molecular dissection of the role of oligodendrocyte gamma-secretase activity in controlling the ensheathment of axons. These insights illustrate the value of this defined system for investigating multiple aspects of CNS myelination.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurogênese/fisiologia , Oligodendroglia/metabolismo , Animais , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Técnicas de Cocultura/métodos , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Ratos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
18.
Neuron ; 43(2): 183-91, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15260955

RESUMO

Axons dictate whether or not they will become myelinated in both the central and peripheral nervous systems by providing signals that direct the development of myelinating glia. Here we identify the neurotrophin nerve growth factor (NGF) as a potent regulator of the axonal signals that control myelination of TrkA-expressing dorsal root ganglion neurons (DRGs). Unexpectedly, these NGF-regulated axonal signals have opposite effects on peripheral and central myelination, promoting myelination by Schwann cells but reducing myelination by oligodendrocytes. These findings indicate a novel role for growth factors in regulating the receptivity of axons to myelination and reveal that different axonal signals control central and peripheral myelination.


Assuntos
Axônios/fisiologia , Bainha de Mielina/fisiologia , Fator de Crescimento Neural/fisiologia , Oligodendroglia/fisiologia , Receptor trkA , Células de Schwann/fisiologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Técnicas de Cocultura , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Gânglios Espinais/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/fisiologia
20.
Curr Biol ; 12(19): R654-6, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12361584

RESUMO

Three different myelin proteins, Nogo, MAG, and OMgp, inhibit regenerating axons after CNS injury. New work reveals that they all share a common receptor and that blockade of this receptor promotes CNS repair and functional recovery.


Assuntos
Regeneração Nervosa/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Axônios/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas Nogo , Receptores de Superfície Celular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...