Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(4): 102570, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729059

RESUMO

Micro-light-emitting-diode (µLED) silicon probes feature independently controllable miniature light-emitting-diodes (LEDs) embedded at several positions in each shank of a multi-shank probe, enabling temporally and spatially precise optogenetic neural circuit interrogation. Here, we present a protocol for performing causal and reproducible neural circuit manipulations in chronically implanted, freely moving animals. We describe steps for introducing optogenetic constructs, preparing and implanting a µLED probe, performing simultaneous in vivo electrophysiology with focal optogenetic perturbation, and recovering a probe following termination of an experiment. For complete details on the use and execution of this protocol, please refer to Watkins de Jong et al. (2023).1.


Assuntos
Optogenética , Silício , Animais , Optogenética/métodos , Neurônios/fisiologia , Fenômenos Eletrofisiológicos , Eletrofisiologia/métodos
2.
Curr Biol ; 33(9): 1689-1703.e5, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023753

RESUMO

Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.


Assuntos
Região CA1 Hipocampal , Região CA3 Hipocampal , Ratos , Animais , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Optogenética , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
3.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798252

RESUMO

Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of µLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using µLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the µLED probe, performing simultaneous optogenetics and electrophysiology in vivo , and post-processing of recorded data. SUMMARY: This method allows a researcher to simultaneously perturb neural activity and record electrophysiological signal from the same neurons with high spatial specificity using silicon probes with integrated µLEDs. We outline a procedure detailing all stages of the process for performing reliable µLED experiments in chronically implanted rodents.

4.
PLoS Pathog ; 6(8)2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20714345

RESUMO

Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60-99%. Of those mosquitoes that were infected, we observed a 75-99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18-20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.


Assuntos
Anopheles/parasitologia , Malária/parasitologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sistema Digestório/parasitologia , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Prevalência , Transdução de Sinais
5.
PLoS Pathog ; 6(7): e1001003, 2010 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-20664791

RESUMO

Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60-99%. Of those mosquitoes that were infected, we observed a 75-99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18-20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.


Assuntos
Anopheles/parasitologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Malária/parasitologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sistema Digestório/parasitologia , Humanos , Prevalência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...