Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 279(3): 577-87, 1998 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-9641979

RESUMO

To gain more insight about Escherichia coli tmRNA structure, NiCR, a square planar macrocyclic nickel (II) complex, was used to probe guanine N7 exposure. On the basis of this additional structural information, a refined secondary structure of the molecule is proposed. In addition to its known specificity for guanine N7, we show here that the chemical probe can also cleave at specific uridine residues. In contrast to the alkaline-labile modification of guanine, the reactivity of NiCR at these uridine residues results in direct strand scission. To better characterize the uridine cleavage sites and assess the importance of the RNA structure for the reaction to occur, smaller RNA molecules derived from one pseudoknot (PK4) of E. coli tmRNA containing two uridine cleavage sites were engineered and probed. It is shown that this pseudoknot can fold by itself in solution and that the expected uridine residues are also cleaved by the nickel complex, suggesting that only a local sequence and/or structural context is required for cleavage. In E. coli tmRNA, the five uridine cleavage sites are located in double-stranded regions. These sites contain a G-U wobble base-pair and a downstream uridine which is cleaved. Using smaller RNAs derived from one stem of PK4, systematic changes in the proposed recognition motif indicate that the G-U pair is required for cleavage. Furthermore, there is no cleavage if the G-U pair is reversed. If the recognition motif is moved within the stem, the cleavage site moves accordingly. Additionally, if the recognition motif is changed such that the G-U pair is flanked by two uridine residues, the reactivity occurs only at the 3' uridine. Radical quenching studies have indicated that sulfate radical, as in the case of guanine oxidation, is involved in uridine oxidation. Although additional studies are required to better characterize the reaction, this paper reports a novel specificity for a chemical probe which may be useful for investigating structural motifs involving G-U pairs in folded RNAs.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , Compostos Organometálicos/metabolismo , RNA Bacteriano/química , Uridina/metabolismo , Composição de Bases/genética , Sequência de Bases , Radicais Livres/metabolismo , Guanina/metabolismo , Magnésio/farmacologia , Sondas Moleculares , Dados de Sequência Molecular , Mutação/genética , Níquel/química , Oligorribonucleotídeos/metabolismo , Compostos Organometálicos/química , Ésteres do Ácido Sulfúrico/metabolismo
2.
J Mol Evol ; 46(4): 419-31, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9541536

RESUMO

The nucleotide sequences of two segments of 6,737 ntp and 258 nto of the 18.4-kb circular mitochondrial (mt) DNA molecule of the soft coral Sarcophyton glaucum (phylum Cnidaria, class Anthozoa, subclass Octocorallia, order Alcyonacea) have been determined. The larger segment contains the 3' 191 ntp of the gene for subunit 1 of the respiratory chain NADH dehydrogenase (ND1), complete genes for cytochrome b (Cyt b), ND6, ND3, ND4L, and a bacterial MutS homologue (MSH), and the 5' terminal 1,124 ntp of the gene for the large subunit rRNA (1-rRNA). These genes are arranged in the order given and all are transcribed from the same strand of the molecule. The smaller segment contains the 3' terminal 134 ntp of the ND4 gene and a complete tRNA(f-Met) gene, and these genes are transcribed in opposite directions. As in the hexacorallian anthozoan, Metridium senile, the mt-genetic code of S. glaucum is near standard: that is, in contrast to the situation in mt-genetic codes of other invertebrate phyla, AGA and AGG specify arginine, and ATA specifies isoleucine. However, as appears to be universal for metazoan mt-genetic codes, TGA specifies tryptophan rather than termination. Also, as in M. senile the mt-tRNA(f-Met) gene has primary and secondary structural features resembling those of Escherichia coli initiator tRNA, including standard dihydrouridine and T psi C loop sequences, and a mismatched nucleotide pair at the top of the amino-acyl stem. The presence of a mutS gene homologue, which has not been reported to occur in any other known mtDNA, suggests that there is mismatch repair activity in S. glaucum mitochondria. In support of this, phylogenetic analysis of MutS family protein sequences indicates that the S. glaucum mtMSH protein is more closely related to the nuclear DNA-encoded mitochondrial mismatch repair protein (MSH1) of the yeast Saccharomyces cerevisiae than to eukaryotic homologues involved in nuclear function, or to bacterial homologues. Regarding the possible origin of the S. glaucum mtMSH gene, the phylogenetic analysis results, together with comparative base composition considerations, and the absence of an MSH gene in any other known mtDNA best support the hypothesis that S. glaucum mtDNA acquired the mtMSH gene from nuclear DNA early in the evolution of octocorals. The presence of mismatch repair activity in S. glaucum mitochondria might be expected to influence the rate of evolution of this organism's mtDNA.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias/genética , Cnidários/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Genes Bacterianos , Sequência de Aminoácidos , Animais , Sequência de Bases , Núcleo Celular/genética , Códon/genética , DNA Mitocondrial/química , Evolução Molecular , Técnicas de Transferência de Genes , Código Genético , Humanos , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência de Metionina/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...