Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 44(21): 7468-84, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16212373

RESUMO

A series of bis-axially ligated complexes of iron(III) tetramesitylporphyrin, TMPFe(III), tetra-(2,6-dibromophenyl)porphyrin, (2,6-Br2)4TPPFe(III), tetra-(2,6-dichlorophenyl)porphyrin, (2,6-Cl2)4TPPFe(III), tetra-(2,6-difluorophenyl)porphyrin, (2,6-F2)4TPPFe(III), and tetra-(2,6-dimethoxyphenyl)porphyrin, (2,6-(OMe)2)4TPPFe(III), where the axial ligands are 1-methylimidazole, 2-methylimidazole, and a series of nine substituted pyridines ranging in basicity from 4-(dimethylamino)pyridine (pK(a)(PyH(+)) = 9.70) to 3- and 4-cyanopyridine (pKa(PyH+) = 1.45 and 1.1, respectively), have been prepared and characterized by EPR and 1H NMR spectroscopy. The EPR spectra, recorded at 4.2 K, show "large g(max)", rhombic, or axial signals, depending on the iron porphyrinate and axial ligand, with the g(max) value decreasing as the basicity of the pyridine decreases, thus indicating a change in electron configuration from (d(xy))2(d(xz),d(yz)3 to (d(xz),d(yz))4(d(xy))1 through each series at this low temperature. Over the temperature range of the NMR investigations (183-313 K), most of the high-basicity pyridine complexes of all five iron(III) porphyrinates exhibit simple Curie temperature dependence of their pyrrole-H paramagnetic shifts and beta-pyrrole spin densities, rho(C) approximately 0.015-0.017, that are indicative of the S = 1/2 (d(xy))(2)(d(xz),d(yz))(3) electron configuration, while the temperature dependences of the pyrrole-H resonances of the lower-basicity pyridine complexes (pK(a)(PyH(+)) < 6.00) show significant deviations from simple Curie behavior which could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in this laboratory that includes consideration of a thermally accessible excited state. In most cases, the ground state of the lower-basicity pyridine complexes is an S = 1/2 state with a mixed (d(xy))2(d(xz),d(yz))3/(d(xz),d(yz))4(d(xy))1 electron configuration, indicating that these two are so close in energy that they cannot be separated by analysis of the NMR shifts; however, for the TMPFe(III) complexes with 3- and 4-CNPy, the ground states were found to be fairly pure (d(xz),d(yz))4(d(xy))1 electron configurations. In all but one case of the intermediate- to low-basicity pyridine complexes of the five iron(III) porphyrinates, the excited state is found to be S = 3/2, with a (d(xz),d(yz))3(d(xy))1(d(z)2)1 electron configuration, lying some 120-680 cm(-1) higher in energy, depending on the particular porphyrinate and axial ligand. Full analysis of the paramagnetic shifts to allow separation of the contact and pseudocontact contributions could be achieved only for the [TMPFe(L)2]+ series of complexes.


Assuntos
Ferro/química , Porfirinas/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Concentração de Íons de Hidrogênio , Imidazóis , Espectroscopia de Ressonância Magnética/métodos , Piridinas , Pirróis
2.
J Biol Inorg Chem ; 8(7): 787-801, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12898323

RESUMO

The EPR and magnetic Mössbauer spectra of a series of axial ligand complexes of tetrakis(2,6-dimethoxyphenyl)porphyrinatoiron(III), [(2,6-(OMe)(2))(4)TPPFeL(2)](+), where L= N-methylimidazole, 2-methylimidazole, or 4-(dimethylamino)pyridine, of one axial ligand complex of tetraphenylporphyrin, the bis(4-cyanopyridine) complex [TPPFe(4-CNPy)(2)](+), and of one axial ligand complex of tetraphenylchlorin, [TPCFe(ImH)(2)](+), where ImH=imidazole, have been investigated and compared to those of low-spin Fe(III) porphyrinates and ferriheme proteins reported in the literature. On the basis of this and previous complementary spectroscopic investigations, three types of complexes have been identified: those having (d(xy))(2)(d(xz),d(yz))(3) electronic ground states with axial ligands aligned in perpendicular planes (Type I), those having (d(xy))(2)(d(xz),d(yz))(3) electronic ground states with axial ligands aligned in parallel planes (Type II), and those having the novel (d(xz),d(yz))(4)(d(xy))(1) electronic ground state (Type III). A subset of the latter type, with planar axial ligands aligned parallel to each other or strong macrocycle asymmetry that yield rhombic EPR spectra, cannot be created using the porphyrinate ligand. Type I centers are characterized by "large g(max)" EPR spectra with g>3.2 and well-resolved, widely spread magnetic Mössbauer spectra having A(zz)/ g(N)mu(N)>680 kG, with A(xx) negative in sign but much smaller in magnitude than A(zz), while Type II centers have well-resolved rhombic EPR spectra with g(zz)=2.4-3.1 and also less-resolved magnetic Mössbauer spectra, and usually have A(zz)/ g(Nmu(N) in the range of 440-660 kG (but in certain cases as small as 180 kG) and A(xx) again negative in sign but only somewhat smaller (but occasionally larger in magnitude) than A(zz), and Type III centers have axial EPR spectra with g( upper left and right quadrants ) approximately 2.6 or smaller and g( vertical line )<1.0-1.95, but often not resolved, and less-resolved magnetic Mössbauer spectra having A(zz)/ g(N)mu(N) in the range of 270-400 kG, and A(xx) again negative in sign but much smaller in magnitude than A(zz). An exception to this rule is [TPPFe(4-CNPy)(2)](+), which has A(xx)/ g(N)mu(N)=-565 kG, A(yy)/ g(N)mu(N)=629 kG, and A(zz)/ g(N)mu(N)=4 kG. A subset of Type II complexes (Type II') have rhombicities ( V/Delta) much greater than 0.67 and A(zz)/ g(N)mu(N) ranging from 320 to 170 kG, with A(xx) also negative but with the magnitude of A(xx) significantly larger than that of A(zz). These classifications are also observed for a variety of ferriheme proteins, and they lead to linear correlations between A(zz) and either A(xx), g(zz), or V/Delta for Types I and II (but not for A(zz) versus V/Delta for Type II'). Not enough data are yet available on Type III complexes to determine what, if any, correlations may be observed.


Assuntos
Citocromos/química , Histidina/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ferro/química , Ligantes , Modelos Moleculares , Conformação Molecular , Espectroscopia de Mossbauer , Tetrapirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...