Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 311(6): H1416-H1430, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765744

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction, vasodilatation, or biphasic reactions) in isolated arteries, depending on vascular tone. Here we aimed to dissect the specific ion channel mechanisms and corresponding Ca2+ signaling pathways underlying such complex responses to menthol and other TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology, confocal Ca2+ imaging, and ratiometric Ca2+ recording. Menthol (300 µM, a concentration typically used to induce TRPM8 currents) strongly inhibited L-type Ca2+ channel current (L-ICa) in isolated myocytes, especially its sustained component, most relevant for depolarization-induced vasoconstriction. In contraction studies, with nifedipine present (10 µM) to abolish L-ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol, similar to resting (i.e., without α-adrenoceptor stimulation by PE) conditions, when L-type channels were mostly deactivated. Menthol-induced increases in PE-induced vasoconstrictions could be inhibited both by the TRPM8 antagonist AMTB (thus confirming the specific role of TRPM8) and by cyclopiazonic acid treatment to deplete Ca2+ stores, pointing to a major contribution of Ca2+ release from the sarcoplasmic reticulum in these contractile responses. Immunocytochemical analysis has indeed revealed colocalization of TRPM8 and InsP3 receptors. Moreover, menthol Ca2+ responses, which were somewhat reduced under Ca2+-free conditions, were strongly reduced by cyclopiazonic acid treatment to deplete Ca2+ store, whereas caffeine-induced Ca2+ responses were blunted in the presence of menthol. Finally, two other common TRPM8 agonists, WS-12 and icilin, also inhibited L-ICa With respect to L-ICa inhibition, WS-12 is the most selective agonist. It augmented PE-induced contractions, whereas any secondary phase of vasorelaxation (as with menthol) was completely lacking. Thus TRPM8 channels are functionally active in rat tail artery myocytes and play a distinct direct stimulatory role in control of vascular tone. However, indirect effects of TRPM8 agonists, which are unrelated to TRPM8, are mediated by inhibition of L-type Ca2+ channels and largely obscure TRPM8-mediated vasoconstriction. These findings will promote our understanding of the vascular TRPM8 role, especially the well-known hypotensive effect of menthol, and may also have certain translational implications (e.g., in cardiovascular surgery, organ storage, transplantation, and Raynaud's phenomenon).


Assuntos
Antipruriginosos/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio , Mentol/farmacologia , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Canais de Cátion TRPM/efeitos dos fármacos , Anilidas/farmacologia , Animais , Artérias , Canais de Cálcio Tipo L/metabolismo , Imuno-Histoquímica , Mentol/análogos & derivados , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pirimidinonas/farmacologia , Ratos , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/metabolismo , Cauda , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
J Physiol ; 588(Pt 17): 3295-305, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20624794

RESUMO

Hydrophobic bile salts are thought to contribute to the disruption of gallbladder smooth muscle (GBSM) function that occurs in gallstone disease, but their mechanism of action is unknown. The current study was undertaken to determine how hydrophobic bile salts interact with GBSM, and how they reduce GBSM activity. The effect of hydrophobic bile salts on the activity of GBSM was measured by intracellular recording and calcium imaging using wholemount preparations from guinea pig and mouse gallbladder. RT-PCR and immunohistochemistry were used to evaluate expression of the G protein-coupled bile acid receptor, GPBAR1. Application of tauro-chenodeoxycholate (CDC, 50-100 microm) to in situ GBSM rapidly reduced spontaneous Ca(2+) flashes and action potentials, and caused a membrane hyperpolarization. Immunoreactivity and transcript for GPBAR1 were detected in gallbladder muscularis. The GPBAR1 agonist, tauro-lithocholic acid (LCA, 10 microm) mimicked the effect of CDC on GBSM. The actions of LCA were blocked by the protein kinase A (PKA) inhibitor, KT5720 (0.5-1.0 microm) and the K(ATP) channel blocker, glibenclamide (10 microm). Furthermore, LCA failed to disrupt GBSM activity in Gpbar1(/) mice. The findings of this study indicate that hydrophobic bile salts activate GPBAR1 on GBSM, and this leads to activation of the cyclic AMP-PKA pathway, and ultimately the opening of K(ATP) channels, thus hyperpolarizing the membrane and decreasing GBSM activity. This inhibitory effect of hydrophobic bile salt activation of GPBAR1 could be a contributing factor in the manifestation of gallstone disease.


Assuntos
Ácidos e Sais Biliares/fisiologia , Vesícula Biliar/fisiologia , Canais KATP/metabolismo , Músculo Liso/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Vesícula Biliar/inervação , Vesícula Biliar/metabolismo , Cobaias , Interações Hidrofóbicas e Hidrofílicas , Canais KATP/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/inervação , Músculo Liso/metabolismo , Inibição Neural/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...