Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 141(9): 1499-1513, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34669035

RESUMO

High-throughput technologies such as next-generation sequencing allow biologists to observe cell function with unprecedented resolution, but the resulting datasets are too large and complicated for humans to understand without the aid of advanced statistical methods. Machine learning (ML) algorithms, which are designed to automatically find patterns in data, are well suited to this task. Yet these models are often so complex as to be opaque, leaving researchers with few clues about underlying mechanisms. Interpretable machine learning (iML) is a burgeoning subdiscipline of computational statistics devoted to making the predictions of ML models more intelligible to end users. This article is a gentle and critical introduction to iML, with an emphasis on genomic applications. I define relevant concepts, motivate leading methodologies, and provide a simple typology of existing approaches. I survey recent examples of iML in genomics, demonstrating how such techniques are increasingly integrated into research workflows. I argue that iML solutions are required to realize the promise of precision medicine. However, several open challenges remain. I examine the limitations of current state-of-the-art tools and propose a number of directions for future research. While the horizon for iML in genomics is wide and bright, continued progress requires close collaboration across disciplines.


Assuntos
Genômica , Aprendizado de Máquina , Algoritmos , Genoma , Genômica/métodos , Humanos , Medicina de Precisão
2.
Front Genet ; 11: 350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351543

RESUMO

Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.

3.
Cell Rep ; 28(9): 2455-2470.e5, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461658

RESUMO

There is a current imperative to unravel the hierarchy of molecular pathways that drive the transition of early to established disease in rheumatoid arthritis (RA). Herein, we report a comprehensive RNA sequencing analysis of the molecular pathways that drive early RA progression in the disease tissue (synovium), comparing matched peripheral blood RNA-seq in a large cohort of early treatment-naive patients, namely, the Pathobiology of Early Arthritis Cohort (PEAC). We developed a data exploration website (https://peac.hpc.qmul.ac.uk/) to dissect gene signatures across synovial and blood compartments, integrated with deep phenotypic profiling. We identified transcriptional subgroups in synovium linked to three distinct pathotypes: fibroblastic pauci-immune pathotype, macrophage-rich diffuse-myeloid pathotype, and a lympho-myeloid pathotype characterized by infiltration of lymphocytes and myeloid cells. This is suggestive of divergent pathogenic pathways or activation disease states. Pro-myeloid inflammatory synovial gene signatures correlated with clinical response to initial drug therapy, whereas plasma cell genes identified a poor prognosis subgroup with progressive structural damage.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/metabolismo , Bases de Dados Factuais , Fenótipo , Transcriptoma , Adulto , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Feminino , Humanos , Interferons/sangue , Interferons/genética , Interferons/metabolismo , Articulações/citologia , Articulações/metabolismo , Masculino , Pessoa de Meia-Idade , Software
5.
J Invest Dermatol ; 139(1): 100-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030151

RESUMO

Biologic therapies have shown high efficacy in psoriasis, but individual response varies and is poorly understood. To inform biomarker discovery in the Psoriasis Stratification to Optimise Relevant Therapy (i.e., PSORT) study, we evaluated a comprehensive array of omics platforms across three time points and multiple tissues in a pilot investigation of 10 patients with severe psoriasis, treated with the tumor necrosis factor (TNF) inhibitor, etanercept. We used RNA sequencing to analyze mRNA and small RNA transcriptome in blood, lesional and nonlesional skin, and the SOMAscan platform to investigate the serum proteome. Using an integrative systems biology approach, we identified signals of treatment response in genes and pathways associated with TNF signaling, psoriasis pathology, and the major histocompatibility complex region. We found association between clinical response and TNF-regulated genes in blood and skin. Using a combination of differential expression testing, upstream regulator analysis, clustering techniques, and predictive modeling, we show that baseline samples are indicative of patient response to biologic therapies, including signals in blood, which have traditionally been considered unreliable for inference in dermatology. In conclusion, our pilot study provides both an analytical framework and empirical basis to estimate power for larger studies, specifically the ongoing PSORT study, which we show as powered for biomarker discovery and patient stratification.


Assuntos
Terapia Biológica/métodos , Etanercepte/uso terapêutico , Regulação da Expressão Gênica , Psoríase/tratamento farmacológico , RNA Mensageiro/genética , Adulto , Feminino , Seguimentos , Humanos , Imunossupressores/uso terapêutico , Masculino , Projetos Piloto , Prognóstico , Estudos Prospectivos , Psoríase/genética , Psoríase/metabolismo , Pele
6.
Endocr Relat Cancer ; 26(1): 165-180, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345732

RESUMO

Primary cilia are sensory organelles involved in regulation of cellular signaling. Cilia loss is frequently observed in tumors; yet, the responsible mechanisms and consequences for tumorigenesis remain unclear. We demonstrate that cilia structure and function is disrupted in human pheochromocytomas - endocrine tumors of the adrenal medulla. This is concomitant with transcriptional changes within cilia-mediated signaling pathways that are associated with tumorigenesis generally and pheochromocytomas specifically. Importantly, cilia loss was most dramatic in patients with germline mutations in the pseudohypoxia-linked genes SDHx and VHL. Using a pheochromocytoma cell line derived from rat, we show that hypoxia and oncometabolite-induced pseudohypoxia are key drivers of cilia loss and identify that this is dependent on activation of an Aurora-A/HDAC6 cilia resorption pathway. We also show cilia loss drives dramatic transcriptional changes associated with proliferation and tumorigenesis. Our data provide evidence for primary cilia dysfunction contributing to pathogenesis of pheochromocytoma by a hypoxic/pseudohypoxic mechanism and implicates oncometabolites as ciliary regulators. This is important as pheochromocytomas can cause mortality by mechanisms including catecholamine production and malignant transformation, while hypoxia is a general feature of solid tumors. Moreover, pseudohypoxia-induced cilia resorption can be pharmacologically inhibited, suggesting potential for therapeutic intervention.


Assuntos
Neoplasias das Glândulas Suprarrenais , Cílios , Feocromocitoma , Adolescente , Adulto , Idoso , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células PC12 , Ratos , Adulto Jovem
7.
J Invest Dermatol ; 137(9): e163-e168, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28843296

RESUMO

High-throughput biology presents unique opportunities and challenges for dermatological research. Drawing on a small handful of exemplary studies, we review some of the major lessons of these new technologies. We caution against several common errors and introduce helpful statistical concepts that may be unfamiliar to researchers without experience in bioinformatics. We recommend specific software tools that can aid dermatologists at varying levels of computational literacy, including platforms with command line and graphical user interfaces. The future of dermatology lies in integrative research, in which clinicians, laboratory scientists, and data analysts come together to plan, execute, and publish their work in open forums that promote critical discussion and reproducibility. In this article, we offer guidelines that we hope will steer researchers toward best practices for this new and dynamic era of data intensive dermatology.


Assuntos
Biologia Computacional/métodos , Dermatologia , Genoma Humano , Genômica/métodos , Guias como Assunto , Animais , Biologia Computacional/tendências , Previsões , Humanos , Projetos de Pesquisa , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...