Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 45(24): 10492-500, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22050765

RESUMO

Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH-Na(2)CO(3) solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge. Results showed that Cr(VI) contents determined by the two methods differ significantly, and that the EPA Method 3060A procedure underestimated the Cr(VI) content in all studied samples. The underestimation is particularly pronounced for COPR. Low extraction yield for EPA Method 3060A was found to be the main reason. The Cr(VI) present in COPR was found to be more concentrated in magnetic phases. This work provides new XANES analyses of SRM 2701 and its extraction residues for the purpose of benchmarking EPA 3060A performance.


Assuntos
Cromo/análise , Poluentes do Solo/análise , Solo/química , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Cromo/química , Poluentes do Solo/química , Estados Unidos , United States Environmental Protection Agency , Espectroscopia por Absorção de Raios X
2.
Anal Chem ; 83(9): 3493-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466194

RESUMO

An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.


Assuntos
Nêutrons , Radioquímica/instrumentação , Selênio/análise , Calibragem , Modelos Lineares , Radioquímica/normas , Padrões de Referência , Incerteza
3.
Inorg Chem ; 48(22): 10658-69, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19827795

RESUMO

The reaction of M(BF(4))(2).xH(2)O, where M is Fe, Co, Cu, and Zn, and the ditopic, bis(pyrazolyl)methane ligand m-[CH(pz)(2)](2)C(6)H(4), L(m), where pz is a pyrazolyl ring, yields the monofluoride bridged, binuclear [M(2)(mu-F)(mu-L(m))(2)](BF(4))(3) complexes. In contrast, a similar reaction of L(m) with Ni(BF(4))(2).6H(2)O yields dibridged [Ni(2)(mu-F)(2)(mu-L(m))(2)](BF(4))(2). The solid state structures of seven [M(2)(mu-F)(mu-L(m))(2)](BF(4))(3) complexes show that the divalent metal ion is in a five-coordinate, trigonal bipyramidal, coordination environment with either a linear or nearly linear M-F-M bridging arrangement. NMR results indicate that [Zn(2)(mu-F)(mu-L(m))(2)](BF(4))(3) retains its dimeric structure in solution. The [Ni(2)(mu-F)(2)(mu-L(m))(2)](BF(4))(2) complex has a dibridging fluoride structure that has a six-coordination environment about each nickel(II) ion. In the solid state, the [Fe(2)(mu-F)(mu-L(m))(2)](BF(4))(3) and [Co(2)(mu-F)(mu-L(m))(2)](BF(4))(3) complexes show weak intramolecular antiferromagnetic exchange coupling between the two metal(II) ions with J values of -10.4 and -0.67 cm(-1), respectively; there is no observed long-range magnetic order. Three different solvates of [Cu(2)(mu-F)(mu-L(m))(2)](BF(4))(3) are diamagnetic between 5 and 400 K, thus showing strong antiferromagnetic exchange interactions of -600 cm(-1) or more negative. Mossbauer spectra indicate that [Fe(2)(mu-F)(mu-L(m))(2)](BF(4))(3) exhibits no long-range magnetic order between 4.2 and 295 K and isomer shifts that are consistent with the presence of five-coordinate, high-spin iron(II).

4.
Inorg Chem ; 45(25): 10077-87, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17140213

RESUMO

Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene, (m-[CH(pz)2]2C6H4, Lm), p-bis[bis(1-pyrazolyl)methyl]benzene, (p-[CH(pz)2]2C6H4, Lp), and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with AgX salts (pz = 1-pyrazolyl; X = BF4- or PF6-) yield two types of molecular motifs depending on the arrangement of the ligating sites about the central arene ring. Reactions of the m-phenylene-linked Lm with AgBF4 and AgPF6 afford complexes consisting of discrete, metallacyclic dications: [Ag2(mu-Lm)2](BF4)2 (1) and [Ag2(mu-Lm)2](PF6)2 (2). When the p-phenylene-linked Lp is treated with AgBF4 and AgPF6, acyclic, cationic coordination polymers are obtained: {[Ag(mu-Lp)]BF4}infinity (3) and {[Ag(mu-Lp)]PF6}infinity (4). Reaction of the ligand L3, containing three bis(pyrazolyl)methane units in a meta arrangement, with an equimolar amount of AgBF4 again yields discrete metallacyclic dications in which one bis(pyrazolyl)methane unit on each ligand remains unbound: [Ag2(mu-L3)2](BF4)2 (5). Treatment of L3 with an excess of AgBF4 affords a polymer of metallacycles, {[Ag3(mu-L3)2](BF4)3}infinity (6), with one of the bis(pyrazolyl)methane units on each ligand bound to a silver cation bridging two metallacycles. The supramolecular structures of the silver(I) complexes 1-6 are organized by noncovalent interactions, including weak hydrogen bonding, pi-pi, and anion-pi interactions.


Assuntos
Metano/química , Compostos Organometálicos/química , Polímeros/química , Pirazóis/química , Prata/química , Cristalografia por Raios X , Ciclização , Ligação de Hidrogênio , Ligantes , Temperatura
5.
Inorg Chem ; 45(25): 10088-97, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17140214

RESUMO

Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.

6.
Inorg Chem ; 43(21): 6609-19, 2004 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-15476358

RESUMO

The new ligands 1,1,4,4-tetra(1-pyrazolyl)butane [CH(pz)(2)(CH(2))(2)CH(pz)(2), L2] and 1,1,5,5-tetra(1-pyrazolyl)pentane [CH(pz)(2)(CH(2))(3)CH(pz)(2), L3] have been prepared to determine the structural changes in silver(I) complexes, if any, that accompany the lengthening of the spacer group between two linked bis(pyrazolyl)methane units. Silver(I) complexes of both ligands with BF(4)(-) and SO(3)CF(3)(-) as the counterion have the formula [Ag(2)(micro-L)(2)](counterion)(2). These complexes have a cyclic dimeric structure in the solid state previously observed with the shorter linked ligand CH(pz)(2)CH(2)CH(pz)(2). Similar chemistry starting with AgNO(3) for L2 yields a complex of the empirical formula [Ag(2)[micro-CH(pz)(2)(CH(2))(2)CH(pz)(2)](3)](NO(3))(2) that retains the cyclic dimeric structure, but bonding of an additional ligand creates a coordination polymer of the cyclic dimers. In contrast, coordination of the nitrate counterion to silver in the complex of L3 leads to the formation of the coordination polymer of the empirical formula [Ag(micro-CH(pz)(2)(CH(2))(3)CH(pz)(2))]NO(3). All six new complexes have extended supramolecular structures based on noncovalent interactions supported by the counterions and the functional groups designed into the ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...