Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 18(11): e1010708, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441766

RESUMO

The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Domínios de Homologia de src , Simulação por Computador
2.
Biomater Adv ; 134: 112566, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35523644

RESUMO

Metastatic cancers can be highly heterogeneous, show large patient variability and are typically hard to treat due to chemoresistance. Personalized therapies are therefore needed to suppress tumor growth and enhance patient's quality of life. Identifying appropriate patient-specific therapies remains a challenge though, due mainly to non-physiological in vitro culture systems. Therefore, more complex and physiological in vitro human cancer microenvironment tools could drastically aid in development of new therapies. We developed a plasma-modified, electro-spun 3D scaffold (PP-3D-S) that can mimic the human cancer microenvironment for customized-cancer therapeutic screening. The PP-3D-S was characterized for optimal plasma-modifying treatment and scaffolds morphology including fiber diameter and pore size. PP-3D-S was then seeded with human fibroblasts to mimic a stromal tissue layer; cell adhesion on plasma-modified poly (lactic acid), PLA, electrospun mats vastly exceeded that on untreated controls. The cell-seeded scaffolds were then overlaid with alginate/gelatin-based hydrogel embedded with MDA-MB231 human breast cancer cells, representing a tumor-tissue interface. Among three different plasma treatments, we found that NH3 plasma promoted the most tumor cell migration to the scaffold surfaces after 7 days of culture. For all treated and non-treated mats, we observed a significant difference in tumor cell migration between small-sized and either medium- or large-sized scaffolds. In addition, we found that the PP-3D-S was highly comparable to the standard Matrigel® migration assays in two different sets of doxorubicin screening experiments, where 75% reduction in migration was achieved with 0.5 µM doxorubicin for both systems. Taken together, our data indicate that PP-3D-S is an effective, low-cost, and easy-to-use alternate 3D tumor migration model which may be suitable as a physiological drug screening tool for personalized medicine against metastatic cancers.


Assuntos
Qualidade de Vida , Alicerces Teciduais , Técnicas de Cocultura , Doxorrubicina/farmacologia , Humanos , Hidrogéis/farmacologia
3.
Mol Ecol Resour ; 22(6): 2285-2303, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437908

RESUMO

Multiplexed PCR amplicon sequencing (AmpSeq) is an increasingly popular application for cost-effective monitoring of threatened species and managed wildlife populations, and shows strong potential for the genomic epidemiology of infectious disease. AmpSeq data from infectious microbes can inform disease control in multiple ways, such as by measuring drug resistance marker prevalence, distinguishing imported from local cases, and determining the effectiveness of therapeutics. We describe the design and comparative evaluation of two new AmpSeq assays for Plasmodium falciparum malaria parasites: a four-locus panel ("4CAST") composed of highly diverse antigens, and a 129-locus panel ("AMPLseq") composed of drug resistance markers, highly diverse loci for inferring relatedness, and a locus to detect Plasmodium vivax co-infection. We explore the performance of each panel in various public health use cases with in silico simulations as well as empirical experiments. The 4CAST panel appears highly suitable for evaluating the number of distinct parasite strains within samples (complexity of infection), showing strong performance across a wide range of parasitaemia levels without a DNA pre-amplification step. For relatedness inference, the larger AMPLseq panel performs similarly to two existing panels of comparable size, despite differences in the data and approach used for designing each panel. Finally, we describe an R package (paneljudge) that facilitates the design and comparative evaluation of genetic panels for relatedness estimation, and we provide general guidance on the design and implementation of AmpSeq panels for the genomic epidemiology of infectious disease.


Assuntos
Doenças Transmissíveis , Malária Vivax , Malária , Genômica , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética
4.
J Bacteriol ; 203(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33593944

RESUMO

Under conditions of glucose excess, aerobically growing bacteria predominantly direct carbon flux towards acetate fermentation, a phenomenon known as overflow metabolism or the bacterial 'Crabtree effect'. Numerous studies of the major acetate-generating pathway, the Pta-AckA, revealed its important role in bacterial fitness through the control of central metabolism to sustain balanced growth and cellular homeostasis. In this work, we highlight the contribution of the Pta-AckA pathway to fitness of the spore-forming bacterium, Bacillus anthracis We demonstrate that disruption of the Pta-AckA pathway causes a drastic growth reduction in the mutants and alters the metabolic and energy status of the cells. Our results revealed that inactivation of the Pta-AckA pathway increases the glucose consumption rate, affects intracellular ATP, NAD+ and NADH levels and leads to a metabolic block at the pyruvate and acetyl-CoA nodes. Consequently, accumulation of intracellular acetyl-CoA and pyruvate forces bacteria to direct carbon into the TCA and/or glyoxylate cycles as well as fatty acid and poly(3-hydroxybutyrate) (PHB) biosynthesis pathways. Notably, the presence of phosphate butyryltransferase in B. anthracis partially compensates for the loss of phosphotransacetylase activity. Furthermore, overexpression of the ptb gene not only eliminates the negative impact of the pta mutation on B. anthracis fitness, but also restores normal growth in the pta mutant of the non-butyrate-producing bacterium, Staphylococcus aureus Taken together, the results of this study demonstrate the importance of the Pta-AckA pathway for B. anthracis fitness by revealing its critical contribution to the maintenance of metabolic homeostasis during aerobic growth under conditions of carbon overflow.IMPORTANCE B. anthracis, the etiologic agent of anthrax, is a highly pathogenic, spore-forming bacterium that causes acute, life-threatening disease in both humans and livestock. A greater understanding of the metabolic determinants governing fitness of B. anthracis is essential for the development of successful therapeutic and vaccination strategies aimed at lessening the potential impact of this important biodefense pathogen. This study is the first to demonstrate the vital role of the Pta-AckA pathway in preserving energy and metabolic homeostasis in B. anthracis under conditions of carbon overflow, therefore, highlighting this pathway as a potential therapeutic target for drug discovery. Overall, the results of this study provide important insight into understanding the metabolic processes and requirements driving rapid B. anthracis proliferation during vegetative growth.

5.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501288

RESUMO

The death and lysis of a subpopulation of Staphylococcus aureus cells during biofilm development benefit the whole bacterial population through the release of an important component of the biofilm matrix, extracellular DNA. Previously, we have demonstrated that these processes are affected by the gene products of the cidABC operon, the expression of which is controlled by the LysR-type transcriptional regulator, CidR. In this study, we characterized cis- and trans-acting elements essential for the induction of the cidABC operon. In addition to a CidR-binding site located within the cidABC promoter region, sequence analysis revealed the presence of a putative catabolite responsive element (cre box), suggestive of the involvement of the catabolite control protein A (CcpA) in the regulation of cidABC expression. This was confirmed using electrophoretic mobility shift assays and real-time reverse transcriptase PCR analysis demonstrating the direct positive control of cidABC transcription by the master regulator of carbon metabolism. Furthermore, the importance of CcpA and the identified cre site for the induction of the cidABC operon was demonstrated by examining the expression of P cidABC-lacZ reporter fusions in various mutant strains in which the genes involved in carbon metabolism and carbon catabolite repression were disrupted. Together the results of this study demonstrate the necessity of both transcriptional regulators, CidR and CcpA, for the induction of the cidABC operon and reveal the complexity of molecular interactions controlling its expression.IMPORTANCE This work focuses on the characterization of cis- and trans-acting elements essential for the induction of the cidABC operon in S. aureus The results of this study are the first to demonstrate the synergistic control of cidABC expression by transcriptional regulators CidR and CcpA during carbohydrate metabolism. We established that the full induction of cidABC expression depends on the metabolic state of bacteria and requires both CidR and CcpA. Together, these findings delineate regulatory control of cidABC expression under different metabolic conditions and provide important new insights into our understanding of cell death mechanisms during biofilm development in S. aureus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Staphylococcus aureus/metabolismo , Transcrição Gênica
6.
Phys Chem Chem Phys ; 21(17): 8698-8708, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30989155

RESUMO

Since the earliest days of this field there has been an interest in correlating the structure of plasma polymer (PP) coatings with deposition parameters, most particularly with energy input per monomer molecule, Em. Both of our laboratories have developed methods for measuring Em (or somewhat equivalent, the apparent activation energy, Ea) in low- (LP) and atmospheric-pressure (AP) electrical discharge plasmas. We recently proposed a new parameter, energy conversion efficiency (ECE), which for the first time permits direct comparison of LP and AP experiments. Here, we report the case of small hydrocarbons, namely acetylene, ethylene and methane. "Critical" Em (or Ea) values that demarcate ECE regimes separating different reaction mechanisms are found to agree remarkably well, and to correlate with specific reaction mechanisms, including dissociation, recombination, gas-phase oligomerization, and surface processes.

7.
J Genomics ; 6: 41-52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707046

RESUMO

Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development.

8.
Langmuir ; 31(37): 10125-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26343365

RESUMO

We report experiments at atmospheric pressure (AP) using a dielectric barrier discharge (DBD) reactor designed for plasma polymerization (PP) with "monomers" at ‰ concentrations in ca.10 standard liters per minute of argon (Ar) carrier gas. We have perfected a method for measuring Eg, the energy dissipated per cycle of the applied a.c. high voltage, Va(f), but the focus here is on ΔEg, the energy difference with and without a flow, Fd, of monomer in the Ar flow, with the plasma being sustained at Va(f) = 2.8 kVrms, f = 20 kHz. From ΔEg and Fd, we derive a characteristic energy per molecule, Em (in eV), and investigate plots of Em versus Fd and 1/Fd for three model "monomers": formic, acetic, and acrylic acid. These data, along with those for lighter or heavier organic compounds, reveal novel information about energy absorption from the plasma and ensuing polymerization reactions.

9.
J Magn Reson ; 210(1): 146-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402487

RESUMO

The 2-D INADEQUATE experiment is a useful experiment for determining carbon structures of organic molecules, which is known for having low signal-to-noise ratios. A non-linear optimization method for solving low-signal spectra resulting from this experiment is introduced to compensate. The method relies on the peak locations defined by the INADEQUATE experiment to create boxes around these areas and measure the signal in each. By measuring pairs of these boxes and applying penalty functions that represent a priori information, we are able to quickly and reliably solve spectra with an acquisition time approximately a quarter of that required by traditional methods. Examples are shown using the spectrum of sucrose.


Assuntos
Carbono/química , Espectroscopia de Ressonância Magnética/instrumentação , Sacarose/química , Modelos Químicos , Software
10.
Microbiology (Reading) ; 144 ( Pt 11): 3159-3169, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9846752

RESUMO

Ten Staphylococcus aureus mutants, defective in the starvation-induced stationary phase of growth were isolated from two independent Tn917-LTV1 transposon insertion libraries and were designated suv as they had apparent survival defects. Seven of these mutants were defective under amino-acid-limiting conditions alone. Two mutants (suv-3 and suv-20) demonstrated lower plating efficiency when starved for glucose, phosphate or amino acids and one mutant (suv-11) had reduced plating efficiency after amino acid or glucose starvation. All of the mutants tested were as resistant to hydrogen peroxide assault as the parent, but six were more sensitive to low pH conditions. All the mutants were physically mapped on the S. aureus chromosome using PFGE. Chromosomal DNA flanking the Tn917-LTV1 insertion sites was rescued by cloning into Escherichia coli. DNA sequence analysis resulted in the identification of a number of transposon-disrupted ORFs encoding putative components such as superoxide dismutase (suv-1), haem A synthase (suv-3), a component of the SOS response (suv-9) and hypoxanthine-guanine phosphoribosyltransferase (suv-20). The Tn917-LTV1 insertion created lacZ transcriptional fusions for some of the stationary-phase loci. Expression analysis indicated that suv-4 was induced at mid-exponential phase, whereas suv-3 and suv-11 were induced at the onset of stationary phase. The possible roles of these suv components in stationary-phase survival or recovery is discussed.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/genética , Eletroforese em Gel de Campo Pulsado , Glucose/metabolismo , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Fosfatos/metabolismo , Mapeamento Físico do Cromossomo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...