Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(12): 2683-2702, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297966

RESUMO

In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.


Assuntos
Aciltransferases , Retículo Endoplasmático , Mitocôndrias , Fosfolipídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Fosfolipídeos/metabolismo , Fosfolipídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Membranas Intracelulares/metabolismo
2.
J Exp Bot ; 73(5): 1327-1343, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34982825

RESUMO

Phosphatidic acid (PA) and lysophosphatidic acid acyltransferases (LPAATs) might be critical for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4, and 5) were identified in Arabidopsis thaliana. These AtLPAATs display a specific enzymatic activity converting lysophosphatidic acid to PA and are located in the endomembrane system. We investigate a putative role for AtLPAATs 3, 4, and 5 in the secretory pathway of root cells through genetical (knockout mutants), biochemical (activity inhibitor, lipid analyses), and imaging (live and immuno-confocal microscopy) approaches. Treating a lpaat4;lpaat5 double mutant with the LPAAT inhibitor CI976 produced a significant decrease in primary root growth. The trafficking of the auxin transporter PIN2 was disturbed in this lpaat4;lpaat5 double mutant treated with CI976, whereas trafficking of H+-ATPases was unaffected. The lpaat4;lpaat5 double mutant is sensitive to salt stress, and the trafficking of the aquaporin PIP2;7 to the plasma membrane in the lpaat4;lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the lpaat4;lpaat5 double mutant treated with CI976, suggesting that the protein trafficking impairment was due to a critical PA concentration threshold.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transporte Proteico
3.
Nat Commun ; 12(1): 4267, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257291

RESUMO

The lipid composition of organelles acts as a landmark to define membrane identity and specify subcellular function. Phosphoinositides are anionic lipids acting in protein sorting and trafficking at the trans-Golgi network (TGN). In animal cells, sphingolipids control the turnover of phosphoinositides through lipid exchange mechanisms at endoplasmic reticulum/TGN contact sites. In this study, we discover a mechanism for how sphingolipids mediate phosphoinositide homeostasis at the TGN in plant cells. Using multiple approaches, we show that a reduction of the acyl-chain length of sphingolipids results in an increased level of phosphatidylinositol-4-phosphate (PtdIns(4)P or PI4P) at the TGN but not of other lipids usually coupled to PI4P during exchange mechanisms. We show that sphingolipids mediate Phospholipase C (PLC)-driven consumption of PI4P at the TGN rather than local PI4P synthesis and that this mechanism is involved in the polar sorting of the auxin efflux carrier PIN2 at the TGN. Together, our data identify a mode of action of sphingolipids in lipid interplay at the TGN during protein sorting.


Assuntos
Fosfatidilinositóis/metabolismo , Esfingolipídeos/metabolismo , Rede trans-Golgi/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Fosfatidilinositóis/genética , Esfingolipídeos/genética , Fosfolipases Tipo C/metabolismo , Rede trans-Golgi/genética
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121266

RESUMO

Lyso-lipid acyltransferases are enzymes involved in various processes such as lipid synthesis and remodelling. Here, we characterized the activity of an acyltransferase from Arabidopsis thaliana (LPIAT). In vitro, this protein, expressed in Escherichia coli membrane, displayed a 2-lyso-phosphatidylinositol acyltransferase activity with a specificity towards saturated long chain acyl CoAs (C16:0- and C18:0-CoAs), allowing the remodelling of phosphatidylinositol. In planta, LPIAT gene was expressed in mature seeds and very transiently during seed imbibition, mostly in aleurone-like layer cells. Whereas the disruption of this gene did not alter the lipid composition of seed, its overexpression in leaves promoted a strong increase in the phosphatidylinositol phosphates (PIP) level without affecting the PIP2 content. The spatial and temporal narrow expression of this gene as well as the modification of PIP metabolism led us to investigate its role in the control of seed germination. Seeds from the lpiat mutant germinated faster and were less sensitive to abscisic acid (ABA) than wild-type or overexpressing lines. We also showed that the protective effect of ABA on young seedlings against dryness was reduced for lpiat line. In addition, germination of lpiat mutant seeds was more sensitive to hyperosmotic stress. All these results suggest a link between phosphoinositides and ABA signalling in the control of seed germination.


Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinação , Osmorregulação , Fosfatos de Fosfatidilinositol/metabolismo , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Ácido Abscísico/farmacologia , Acil Coenzima A/metabolismo , Arabidopsis/efeitos dos fármacos , Germinação/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Mutação/genética , Osmorregulação/efeitos dos fármacos , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Salinidade , Sementes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Nat Commun ; 7: 12788, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681606

RESUMO

The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells.

6.
J Exp Bot ; 67(9): 2627-2639, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26962210

RESUMO

SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named 'phytolongins' (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the 'Phyl domain'. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway.

7.
J Exp Bot ; 66(21): 6665-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26208648

RESUMO

The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are critical for the function of the secretory pathway. The SNARE Memb11 is involved in membrane trafficking at the ER-Golgi interface. The aim of the work was to decipher molecular mechanisms acting in Memb11-mediated ER-Golgi traffic. In mammalian cells, the orthologue of Memb11 (membrin) is potentially involved in the recruitment of the GTPase Arf1 at the Golgi membrane. However molecular mechanisms associated to Memb11 remain unknown in plants. Memb11 was detected mainly at the cis-Golgi and co-immunoprecipitated with Arf1, suggesting that Arf1 may interact with Memb11. This interaction of Memb11 with Arf1 at the Golgi was confirmed by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was found to be specific to Memb11 as compared to either Memb12 or Sec22. Using a structural bioinformatic approach, several sequences in the N-ter part of Memb11 were hypothesized to be critical for this interaction and were tested by BiFC on corresponding mutants. Finally, by using both in vitro and in vivo approaches, we determined that only the GDP-bound form of Arf1 interacts with Memb11. Together, our results indicate that Memb11 interacts with the GDP-bound form of Arf1 in the Golgi apparatus.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Complexo de Golgi/metabolismo , Proteínas Qb-SNARE/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Qb-SNARE/metabolismo , Fatores de Transcrição/metabolismo
8.
Mol Biol Cell ; 23(2): 233-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090344

RESUMO

For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation.


Assuntos
Aciltransferases/metabolismo , Homeostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Triglicerídeos/metabolismo , Aciltransferases/genética , Retículo Endoplasmático/enzimologia , Técnicas de Silenciamento de Genes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Plant Cell Rep ; 30(2): 177-93, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21120657

RESUMO

The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Células Eucarióticas/metabolismo , Organelas/fisiologia , Transporte Proteico , Proteínas/metabolismo , Via Secretória , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Glucosilceramidas/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Complexo de Golgi/fisiologia , Homeostase , Metabolismo dos Lipídeos , Fluidez de Membrana , Lipídeos de Membrana/metabolismo , Mutação , Organelas/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Proteínas/genética
10.
Traffic ; 11(4): 479-90, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20028486

RESUMO

Lipids have an established role as structural components of membranes or as signalling molecules, but their role as molecular actors in protein secretion is less clear. The complex sphingolipid glucosylceramide (GlcCer) is enriched in the plasma membrane and lipid microdomains of plant cells, but compared to animal and yeast cells, little is known about the role of GlcCer in plant physiology. We have investigated the influence of GlcCer biosynthesis by glucosylceramide synthase (GCS) on the efficiency of protein transport through the plant secretory pathway and on the maintenance of normal Golgi structure. We determined that GlcCer is synthesized at the beginning of the plant secretory pathway [mainly endoplasmic reticulum (ER)] and that D,L-threo-1-phenyl-2-decanoyl amino-3-morpholino-propanol (PDMP) is a potent inhibitor of plant GCS activity in vitro and in vivo. By an in vivo confocal microscopy approach in tobacco leaves infiltrated with PDMP, we showed that the decrease in GlcCer biosynthesis disturbed the transport of soluble and membrane secretory proteins to the cell surface, as these proteins were partly retained intracellularly in the ER and/or Golgi. Electron microscopic observations of Arabidopsis thaliana root cells after high-pressure freezing and freeze substitution evidenced strong morphological changes in the Golgi bodies, pointing to a link between decreased protein secretion and perturbations of Golgi structure following inhibition of GlcCer biosynthesis in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosilceramidas/biossíntese , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Arabidopsis/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Glucosilceramidas/antagonistas & inibidores , Glucosiltransferases/análise , Complexo de Golgi/ultraestrutura , Morfolinas/metabolismo , Transporte Proteico/fisiologia , Nicotiana/metabolismo , Nicotiana/ultraestrutura
11.
Plant Signal Behav ; 4(10): 962-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19826222

RESUMO

We recently identified a novel and transplantable di-acidic motif (EXXD) that facilitates ER export of the Golgi syntaxin SYP31 (type IV protein) and which may function also for type I and type II proteins in plants. By mutagenesis of Arabidopsis thaliana SYP31 and live cell imaging experiments in tobacco leaf epidermal cells, we determined that replacing the MELAD sequence of SYP31 with gagag retained SYP31 in the ER, which demonstrates that the di-acidic motif ELAD is critical for SYP31 ER export. To investigate whether blockage of a Golgi SNARE in the ER have consequences for plant growth, we produced tobacco plants stably overexpressing either the wild type MELAD or the mutant gagag form of SYP31. Whereas tobacco plants overexpressing the wild-type SYP31 developed to set seed, tobacco plants overexpressing the mutant form gagag rapidly became chlorotic, ceased their growth and invariably died after several weeks. This indicated that retention of overexpressed SYP31 in the ER is likely toxic for the secretory pathway and, therefore, plant development. Putative explanations for this observation are discussed taking into account SNARE properties and possible interactions.

12.
J Exp Bot ; 60(11): 3157-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19516076

RESUMO

It is generally accepted that ER protein export is largely influenced by the transmembrane domain (TMD). The situation is unclear for membrane-anchored proteins such as SNAREs, which are anchored to the membrane by their TMD at the C-terminus. For example, in plants, Sec22 and SYP31 (a yeast Sed5 homologue) have a 17 aa TMD but different locations (ER/Golgi and Golgi), indicating that TMD length alone is not sufficient to explain their targeting. To establish the identity of factors that influence SNARE targeting, mutagenesis and live cell imaging experiments were performed on SYP31. It was found that deletion of the entire N-terminus domain of SYP31 blocked the protein in the ER. Several deletion mutants of different parts of this N-terminus domain indicated that a region between the SNARE helices Hb and Hc is required for Golgi targeting. In this region, replacement of the aa sequence MELAD by GAGAG or MALAG retained the protein in the ER, suggesting that MELAD may function as a di-acidic ER export motif EXXD. This suggestion was further verified by replacing the established di-acidic ER export motif DLE of a type II Golgi protein AtCASP and a membrane-anchored type I chimaera, TMcCCASP, by MELAD or GAGAG. The MELAD motif allowed the proteins to reach the Golgi, whereas the motif GAGAG was found to be insufficient to facilitate ER protein export. Our analyses indicate that we have identified a novel and transplantable di-acidic motif that facilitates ER export of SYP31 and may function for type I and type II proteins in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Qa-SNARE/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Expressão Gênica , Complexo de Golgi/química , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Deleção de Sequência , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...