Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39010249

RESUMO

In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.

2.
J Neuroendocrinol ; 35(11): e13251, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37053148

RESUMO

Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.


Assuntos
Neuropeptídeos , Relaxina , Hormônio Liberador da Corticotropina , Colecistocinina , Glucagon
3.
Physiol Rev ; 103(2): 1423-1485, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36422994

RESUMO

The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the ß-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.


Assuntos
Insulina , Papilas Gustativas , Humanos , Insulina/metabolismo , Paladar/fisiologia , Glicemia/metabolismo , Transdução de Sinais
4.
Physiol Rev ; 102(2): 689-813, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486393

RESUMO

During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.


Assuntos
Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Animais , Homeostase/fisiologia , Humanos , Transdução de Sinais/fisiologia
5.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33495245

RESUMO

Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.


Assuntos
Veias Mesentéricas , Gânglio Nodoso , Animais , Masculino , Neurônios , Ratos , Núcleo Solitário , Nervo Vago
6.
Proc Natl Acad Sci U S A ; 116(16): 8018-8027, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923123

RESUMO

Control of multiple life-critical physiological and behavioral functions requires the hypothalamus. Here, we provide a comprehensive description and rigorous analysis of mammalian intrahypothalamic network architecture. To achieve this at the gray matter region (macroscale) level, macroscale connection (macroconnection) data for the rat hypothalamus were extracted from the primary literature. The dataset indicated the existence of 7,982 (of 16,770 possible) intrahypothalamic macroconnections. Network analysis revealed that the intrahypothalamic macroconnection network (its macroscale subconnectome) is divided into two identical top-level subsystems (or subnetworks), each composed of two nested second-level subsystems. At the top-level, this suggests a deeply integrated network; however, regional grouping of the two second-level subsystems suggested a partial separation between control of physiological functions and behavioral functions. Furthermore, inclusion of four candidate hubs (dominant network nodes) in the second-level subsystem that is associated prominently with physiological control suggests network primacy with respect to this function. In addition, comparison of network analysis with expression of gene markers associated with inhibitory (GAD65) and excitatory (VGLUT2) neurotransmission revealed a significant positive correlation between measures of network centrality (dominance) and the inhibitory marker. We discuss these results in relation to previous understandings of hypothalamic organization and provide, and selectively interrogate, an updated hypothalamus structure-function network model to encourage future hypothesis-driven investigations of identified hypothalamic subsystems.


Assuntos
Conectoma , Hipotálamo , Vias Neurais , Animais , Biologia Computacional , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Masculino , Modelos Neurológicos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R708-R720, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847161

RESUMO

Endogenous intestinal glucagon-like peptide-1 (GLP-1) controls satiation and glucose metabolism via vagal afferent neurons (VANs). Recently, VANs have received increasing attention for their role in brown adipose tissue (BAT) thermogenesis. It is, however, unclear whether VAN GLP-1 receptor (GLP-1R) signaling affects BAT thermogenesis and energy expenditure (EE) and whether this VAN mechanism contributes to energy balance. First, we tested the effect of the GLP-1R agonist exendin-4 (Ex4, 0.3 µg/kg ip) on EE and BAT thermogenesis and whether these effects require VAN GLP-1R signaling using a rat model with a selective Glp1r knockdown (kd) in VANs. Second, we examined the role of VAN GLP-1R in energy balance during chronic high-fat diet (HFD) feeding in VAN Glp1r kd rats. Finally, we used viral transsynaptic tracers to identify the possible neuronal substrates of such a gut-BAT interaction. VAN Glp1r kd attenuated the acute suppressive effects of Ex4 on EE and BAT thermogenesis. Consistent with this finding, the VAN Glp1r kd increased EE and BAT activity, diminished body weight gain, and improved insulin sensitivity compared with HFD-fed controls. Anterograde transsynaptic viral tracing of VANs infected major hypothalamic and hindbrain areas involved in BAT sympathetic regulation. Moreover, retrograde tracing from BAT combined with laser capture microdissection revealed that a population of VANs expressing Glp1r is synaptically connected to the BAT. Our findings reveal a novel role of VAN GLP-1R signaling in the regulation of EE and BAT thermogenesis and imply that through this gut-brain-BAT connection, intestinal GLP-1 plays a role in HFD-induced metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/inervação , Sistema Nervoso Autônomo/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Intestinos/inervação , Termogênese , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Incretinas/farmacologia , Masculino , Vias Neurais/metabolismo , Neurônios Aferentes/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Termogênese/efeitos dos fármacos
9.
Mol Metab ; 11: 33-46, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650350

RESUMO

OBJECTIVE: Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function. METHODS: We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization. RESULTS: GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies. CONCLUSIONS: Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Adiposidade , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo/metabolismo , Termogênese , Animais , Exenatida/metabolismo , Neurônios GABAérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Resistência à Insulina , Lipogênese , Masculino , Neuropeptídeo Y/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Desacopladora 1/metabolismo
10.
J Comp Neurol ; 526(8): 1287-1306, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29424419

RESUMO

Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine ß-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.


Assuntos
Neurônios/citologia , Neurotransmissores/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Terminações Pré-Sinápticas/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Butiratos/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R811-R823, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384699

RESUMO

Hindbrain catecholamine neurons convey gut-derived metabolic signals to an interconnected neuronal network in the hypothalamus and adjacent forebrain. These neurons are critical for short-term glycemic control, glucocorticoid and glucoprivic feeding responses, and glucagon-like peptide 1 (GLP-1) signaling. Here we investigate whether these pathways also contribute to long-term energy homeostasis by controlling obesogenic sensitivity to a high-fat/high-sucrose choice (HFSC) diet. We ablated hindbrain-originating catecholaminergic projections by injecting anti-dopamine-ß-hydroxylase-conjugated saporin (DSAP) into the paraventricular nucleus of the hypothalamus (PVH) of male rats fed a chow diet for up to 12 wk or a HFSC diet for 8 wk. We measured the effects of DSAP lesions on food choices; visceral adiposity; plasma glucose, insulin, and leptin; and indicators of long-term ACTH and corticosterone secretion. We also determined lesion effects on the number of carbohydrate or fat calories required to increase visceral fat. Finally, we examined corticotropin-releasing hormone levels in the PVH and arcuate nucleus expression of neuropeptide Y ( Npy), agouti-related peptide ( Agrp), and proopiomelanocortin ( Pomc). DSAP-injected chow-fed rats slowly increase visceral adiposity but quickly develop mild insulin resistance and elevated blood glucose. DSAP-injected HFSC-fed rats, however, dramatically increase food intake, body weight, and visceral adiposity beyond the level in control HFSC-fed rats. These changes are concomitant with 1) a reduction in the number of carbohydrate calories required to generate visceral fat, 2) abnormal Npy, Agrp, and Pomc expression, and 3) aberrant control of insulin secretion and glucocorticoid negative feedback. Long-term metabolic adaptations to high-carbohydrate diets, therefore, require intact forebrain catecholamine projections. Without them, animals cannot alter forebrain mechanisms to restrain increased visceral adiposity.


Assuntos
Catecolaminas/metabolismo , Rede Nervosa/fisiopatologia , Obesidade/fisiopatologia , Prosencéfalo/fisiopatologia , Animais , Glicemia/metabolismo , Dieta , Dopamina beta-Hidroxilase/antagonistas & inibidores , Ingestão de Energia , Insulina/sangue , Gordura Intra-Abdominal/efeitos dos fármacos , Leptina/sangue , Masculino , Vias Neurais/fisiopatologia , Núcleo Hipotalâmico Paraventricular , Ratos , Ratos Sprague-Dawley , Saporinas/farmacologia
12.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R324-R337, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077392

RESUMO

The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity.


Assuntos
Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/inervação , Córtex Sensório-Motor/citologia , Sistema Nervoso Simpático/citologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Cricetinae , Retroalimentação Sensorial , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Phodopus , Receptor Cross-Talk , Córtex Sensório-Motor/fisiologia , Sistema Nervoso Simpático/fisiologia
13.
Neuron ; 93(1): 1-2, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28056340

RESUMO

Real-time activity measurements of genetically identified neuroendocrine vasopressin neurons show they can anticipate osmotic challenges. In this issue of Neuron, Mandelblat-Cerf et al. (2017) show that correlating these results with ongoing behavior and plasma osmolality points to the existence of brain networks that integrate exterosensory cues with interosensory signals to drive neuroendocrine output.


Assuntos
Arginina Vasopressina , Vasopressinas , Neurônios
14.
Mol Metab ; 5(7): 552-565, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27408779

RESUMO

OBJECTIVE: Glucagon-like peptide-1 (GLP-1) analogs are attractive options for the treatment of type II diabetes and obesity because of their incretin and anorexigenic effects. Peripheral administration of the GLP-1R agonist Exendin-4 (Ex-4) also increases glucocorticoid secretion in rodents and humans, but whether the released glucocorticoids interact with Ex-4's anorexigenic effect remains unclear. METHODS: To test this, we used two experimental approaches that suppress corticosterone secretion and then assessed Ex-4 effects on eating in adult male rats. First, we combined acute and chronic low dose dexamethasone treatment with Ex-4. Second, we ablated hindbrain catecholamine neurons projecting to the hypothalamus with anti-dopamine-ß-hydroxylase-saporin (DSAP) to block Ex-4-induced corticosterone secretion. RESULTS: Combining dexamethasone and Ex-4 produced a larger acute anorexigenic effect than Ex-4 alone. Likewise, chronic dexamethasone and Ex-4 co-treatment produced a synergistic effect on eating and greater body weight loss in diet-induced obese rats than Ex-4 alone. DSAP lesions not only blunted Ex-4's ability to increase corticosterone secretion, but potentiated the anorexigenic effect of Ex-4, indicating that Ex-4-dependent corticosterone secretion opposes Ex-4's actions. Consistent with the enhancement of Ex-4's anorexigenic effect, DSAP lesion altered Ex-4-dependent changes in neuropeptide Y, preproglucagon, and corticotropin releasing hormone gene expression involved in glucocorticoid feedback. CONCLUSIONS: Our findings demonstrate that limiting glucocorticoid secretion and actions with low dose dexamethasone or DSAP lesion increases Ex-4's ability to reduce food intake and body weight. Novel glucocorticoid receptor based mechanisms, therefore, may help enhance GLP-1-based obesity therapies.

15.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1177-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27030665

RESUMO

The consensus view of the ventromedial nucleus of the hypothalamus (VMH) is that it is a key node in the rodent brain network controlling sympathoadrenal counterregulatory responses to hypoglycemia. To identify the location of hypoglycemia-responsive neurons in the VMH, we performed a high spatial resolution Fos analysis in the VMH of rats made hypoglycemic with intraperitoneal injections of insulin. We examined Fos expression in the four constituent parts of VMH throughout its rostrocaudal extent and determined their relationship to blood glucose concentrations. Hypoglycemia significantly decreased Fos expression only in the dorsomedial and central parts of the VMH, but not its anterior or ventrolateral parts. Moreover, the number of Fos-expressing neurons was significantly and positively correlated in the two responsive regions with terminal blood glucose concentrations. We also measured Fos responses in the paraventricular nucleus of the hypothalamus (PVH) and in several levels of the periaqueductal gray (PAG), which receives strong projections from the VMH. We found the expected and highly significant increase in Fos in the neuroendocrine PVH, which was negatively correlated to terminal blood glucose concentrations, but no significant differences were seen in any part of the PAG. Our results show that there are distinct populations of VMH neurons whose Fos expression is suppressed by hypoglycemia, and their numbers correlate with blood glucose. These findings support a clear division of glycemic control functions within the different parts of the VMH.


Assuntos
Glicemia/metabolismo , Hipoglicemia/fisiopatologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Progressão da Doença , Regulação para Baixo , Masculino , Especificidade de Órgãos , Ratos , Ratos Wistar , Distribuição Tecidual
17.
J Endocrinol ; 226(2): T25-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25994006

RESUMO

In November 1955, Geoffrey Harris published a paper based on the Christian A Herter Lecture he had given earlier that year at Johns Hopkins University in Baltimore, MD, USA. The paper reviewed the contemporary research that was starting to explain how the hypothalamus controlled the pituitary gland. In the process of doing so, Harris introduced a set of properties that helped define the neuroendocrine hypothalamus. They included: i) three criteria that putative releasing factors for adenohypophysial hormones would have to fulfill; ii) an analogy between the representation of body parts in the sensory and motor cortices and the spatial localization of neuroendocrine function in the hypothalamus; and iii) the idea that neuroendocrine neurons are motor neurons and the pituitary stalk functions as a Sherringtonian final common pathway through which the impact of sensory and emotional events on neuroendocrine neurons must pass in order to control pituitary hormone release. Were these properties a sign that the major neuroscientific discoveries that were being made in the early 1950s were beginning to influence neuroendocrinology? This Thematic Review discusses two main points: the context and significance of Harris's Herter Lecture for how our understanding of neuroendocrine anatomy (particularly as it relates to the control of the adenohypophysis) has developed since 1955; and, within this framework, how novel and powerful techniques are currently taking our understanding of the structure of the neuroendocrine hypothalamus to new levels.


Assuntos
Sistema Hipotálamo-Hipofisário/anatomia & histologia , Hipotálamo/anatomia & histologia , Hipófise/anatomia & histologia , Animais , Humanos , Neuroendocrinologia
18.
Physiology (Bethesda) ; 29(5): 314-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25180261

RESUMO

Hypoglycemia poses a serious threat to the integrity of the brain, owing to its reliance on blood glucose as a fuel. Protecting against hypoglycemia is an extended network of glucose sensors located within the brain and in the periphery that serve to mediate responses restoring euglycemia, i.e., counterregulatory responses. This review examines the various glucose sensory loci involved in hypoglycemic detection, with a particular emphasis on peripheral glucose sensory loci and their contribution to hypoglycemic counterregulation.


Assuntos
Glicemia/análise , Glucose/metabolismo , Hipoglicemia/diagnóstico , Hipoglicemia/metabolismo , Hipoglicemiantes/uso terapêutico , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo
19.
Diabetes ; 63(8): 2854-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24740574

RESUMO

Different onset rates of insulin-induced hypoglycemia use distinct glucosensors to activate sympathoadrenal counterregulatory responses (CRRs). Glucosensory elements in the portal-mesenteric veins are dispensable with faster rates when brain elements predominate, but are essential for responses to the slower-onset hypoglycemia that is common with insulin therapy. Whether a similar rate-associated divergence exists within more expansive brain networks is unknown. Hindbrain catecholamine neurons distribute glycemia-related information throughout the forebrain. We tested in male rats whether catecholaminergic neurons that project to the medial and ventromedial hypothalamus are required for sympathoadrenal CRRs to rapid- and slow-onset hypoglycemia and whether these neurons are differentially engaged as onset rates change. Using a catecholamine-specific neurotoxin and hyperinsulinemic-hypoglycemic clamps, we found that sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia require hypothalamus-projecting catecholaminergic neurons, the majority of which originate in the ventrolateral medulla. As determined with Fos, these neurons are differentially activated by the two onset rates. We conclude that 1) catecholaminergic projections to the hypothalamus provide essential information for activating sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia, 2) hypoglycemia onset rates have a major impact on the hypothalamic mechanisms that enable sympathoadrenal CRRs, and 3) hypoglycemia-related sensory information activates hindbrain catecholaminergic neurons in a rate-dependent manner.


Assuntos
Glândulas Suprarrenais/fisiologia , Glicemia/metabolismo , Catecolaminas/metabolismo , Prosencéfalo/citologia , Sistema Nervoso Simpático/fisiologia , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Anticorpos/imunologia , Neurônios Colinérgicos , Dopamina beta-Hidroxilase/imunologia , Glucose/administração & dosagem , Glucose/metabolismo , Técnica Clamp de Glucose , Hipoglicemia , Imunoglobulina G/imunologia , Masculino , Proteínas Oncogênicas v-fos , Ratos , Ratos Wistar , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Saporinas , Sistema Nervoso Simpático/efeitos dos fármacos , Fatores de Tempo
20.
Diabetes ; 63(8): 2866-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24727435

RESUMO

Hypoglycemic detection at the portal-mesenteric vein (PMV) appears mediated by spinal afferents and is critical for the counter-regulatory response (CRR) to slow-onset, but not rapid-onset, hypoglycemia. Since rapid-onset hypoglycemia induces Fos protein expression in discrete brain regions, we hypothesized that denervation of the PMV or lesioning spinal afferents would suppress Fos expression in the dorsal medulla during slow-onset hypoglycemia, revealing a central nervous system reliance on PMV glucosensors. Rats undergoing PMV deafferentation via capsaicin, celiac-superior mesenteric ganglionectomy (CSMG), or total subdiaphragmatic vagotomy (TSV) were exposed to hyperinsulinemic-hypoglycemic clamps where glycemia was lowered slowly over 60-75 min. In response to hypoglycemia, control animals demonstrated a robust CRR along with marked Fos expression in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Fos expression was suppressed by 65-92% in capsaicin-treated animals, as was epinephrine (74%), norepinephrine (33%), and glucagon (47%). CSMG also suppressed Fos expression and CRR during slow-onset hypoglycemia, whereas TSV failed to impact either. In contrast, CSMG failed to impact upon Fos expression or the CRR during rapid-onset hypoglycemia. Peripheral glucosensory input from the PMV is therefore required for activation of hindbrain neurons and the full CRR during slow-onset hypoglycemia.


Assuntos
Hipoglicemia/metabolismo , Veias Mesentéricas/fisiologia , Veia Porta/fisiologia , Receptores de Superfície Celular/fisiologia , Rombencéfalo/citologia , Animais , Capsaicina , Ganglionectomia , Regulação da Expressão Gênica/fisiologia , Técnica Clamp de Glucose , Masculino , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Ratos Wistar , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...