Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 490, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488478

RESUMO

BACKGROUND: Antibiotic usage and antibiotic resistance (ABR) patterns changed during the COVID-19 pandemic. Inadequate empiric antibiotic therapy (IET) is a significant public health problem and contributes to ABR. We evaluated factors associated with IET before and during the COVID-19 pandemic to determine the impact of the pandemic on antibiotic management. METHODS: This multicenter, retrospective cohort analysis included hospitalized US adults who had a positive bacterial culture (specified gram-positive or gram-negative bacteria) from July 2019 to October 2021 in the BD Insights Research Database. IET was defined as antibacterial therapy within 48 h that was not active against the bacteria. ABR results were based on susceptibility testing and reports from local facilities. Multivariate analysis was used to identify risk factors associated with IET in patients with any positive bacterial culture and ABR-positive cultures, including multidrug-resistant (MDR) bacteria. RESULTS: Of 278,344 eligible patients in 269 hospitals, 56,733 (20.4%) received IET; rates were higher in patients with ABR-positive (n = 93,252) or MDR-positive (n = 39,000) cultures (34.9% and 45.0%, respectively). Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-positive patients had significantly higher rates of IET (25.9%) compared with SARS-CoV-2-negative (20.3%) or not tested (19.7%) patients overall and in the ABR and MDR subgroups. Patients with ABR- or MDR-positive cultures had more days of therapy and longer lengths of stay. In multivariate analyses, ABR, MDR, SARS-CoV-2-positive status, respiratory source, and prior admissions were identified as key IET risk factors. CONCLUSIONS: IET remained a persistent problem during the COVID-19 pandemic and occurred at higher rates in patients with ABR/MDR bacteria or a co-SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Antibacterianos , Pandemias , Estudos Retrospectivos , Bactérias
2.
Open Forum Infect Dis ; 10(3): ofad098, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968964

RESUMO

Background: Antimicrobial resistance (AMR) poses a significant challenge for treating pneumococcal disease. This study assessed AMR trends in Streptococcus pneumoniae from US children. Methods: We evaluated antibiotic resistance, defined as facility antimicrobial susceptibility reports of intermediate/resistant, in 30-day nonduplicate S pneumoniae isolates from children (<18 years of age) with invasive (blood or cerebrospinal fluid/neurological) or noninvasive (respiratory or ear/nose/throat) isolates at 219 US hospital inpatient/outpatient settings in the BD Insights Research Database (January 2011-February 2020). We used descriptive statistics to characterize the percentage of antimicrobial-resistant isolates and generalized estimating equations to assess variations in resistance over time. Results: Of 7605 S pneumoniae isolates analyzed, 6641 (87.3%) were from noninvasive sources. Resistance rates were higher in noninvasive versus invasive isolates. Isolates showed high observed rates of resistance to ≥1 drug class (56.8%), ≥2 drug classes (30.7%), macrolides (39.9%), and penicillin (39.6%) and significant annual increases in resistance to ≥1 drug class (+0.9%), ≥2 drug classes (+1.8%), and macrolides (+5.0%). Conclusions: Among US children over the last decade, S pneumoniae isolates showed persistently high rates of resistance to antibiotics and significant increases in ≥1 drug class, ≥2 drug classes, and macrolide resistance rates. Efforts to address AMR in S pneumoniae may require vaccines targeting resistant serotypes and antimicrobial stewardship efforts.

3.
BMC Infect Dis ; 23(1): 117, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829137

RESUMO

BACKGROUND: Excessive use of antibiotics has been reported during the SARS-CoV-2 pandemic. We evaluated trends in antibiotic use and culture positive Gram-negative (GN)/Gram-positive (GP) pathogens in US hospitalized patients before and during the SARS-CoV-2 pandemic. METHODS: This multicenter, retrospective study included patients from 271 US facilities with > 1-day inpatient admission with discharge or death between July 1, 2019, and October 30, 2021, in the BD Insights Research Database. We evaluated microbiological testing data, antibacterial use, defined as antibacterial use ≥ 24 h in admitted patients, and duration of antibacterial therapy. RESULTS: Of 5,518,744 patients included in the analysis, 3,729,295 (67.6%) patients were hospitalized during the pandemic with 2,087,774 (56.0%) tested for SARS-CoV-2 and 189,115 (9.1%) testing positive for SARS-CoV-2. During the pre-pandemic period, 36.2% were prescribed antibacterial therapy and 9.3% tested positive for select GN/GP pathogens. During the SARS-CoV-2 pandemic, antibacterial therapy (57.8%) and positive GN/GP culture (11.9%) were highest in SARS-CoV-2-positive patients followed by SARS-CoV-2-negative patients (antibacterial therapy, 40.1%; GN/GP, pathogens 11.0%), and SARS-CoV-2 not tested (antibacterial therapy 30.4%; GN/GP pathogens 7.2%). Multivariate results showed significant decreases in antibacterial therapy and positive GN/GP cultures for both SARS-CoV-2-positive and negative patients during the pandemic, but no significant overall changes from the pre-pandemic period to the pandemic period. CONCLUSIONS: There was a decline in both antibacterial use and positive GN/GP pathogens in patients testing positive for SARS-CoV-2. However, overall antibiotic use was similar prior to and during the pandemic. These data may inform future efforts to optimize antimicrobial stewardship and prescribing.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Pacientes Internados
4.
Artigo em Inglês | MEDLINE | ID: mdl-36483354

RESUMO

Outpatient antibiotic use increases during winter months, but information on temporal changes in inpatient antibiotic use in US hospitals is limited. The use of certain inpatient antibiotics, including extended-spectrum cephalosporins, macrolides, and tetracyclines, was strongly associated with influenza activity during the 2015-2019 viral respiratory seasons.

5.
Open Forum Infect Dis ; 9(11): ofac537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381612

RESUMO

Background: Antibacterial therapy is frequently used in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without evidence of bacterial infection, prompting concerns about increased antimicrobial resistance (AMR). We evaluated trends in AMR before and during the SARS-CoV-2 pandemic. Methods: This multicenter, retrospective cohort analysis included hospitalized adults aged ≥18 years with >1-day inpatient admission and a record of discharge or death from 271 US facilities in the BD Insights Research Database. We evaluated rates of AMR events, defined as positive cultures for select gram-negative and gram-positive pathogens from any source, with nonsusceptibility reported by commercial panels before (1 July 2019-29 February 2020) and during (1 March 2020-30 October 2021) the SARS-CoV-2 pandemic. Results: Of 5 518 666 admissions evaluated, AMR rates per 1000 admissions were 35.4 for the prepandemic period and 34.7 for the pandemic period (P ≤ .0001). In the pandemic period, AMR rates per 1000 admissions were 49.2 for SARS-CoV-2-positive admissions, 41.1 for SARS-CoV-2-negative admissions, and 25.7 for patients untested (P ≤ .0001). AMR rates per 1000 admissions among community-onset infections during the pandemic were lower versus prepandemic levels (26.1 vs 27.6; P < .0001), whereas AMR rates for hospital-onset infections were higher (8.6 vs 7.7; P < .0001), driven largely by SARS-CoV-2-positive admissions (21.8). AMR rates were associated with overall antimicrobial use, rates of positive cultures, and higher use of inadequate empiric therapy. Conclusions: Although overall AMR rates did not substantially increase from prepandemic levels, patients tested for SARS-CoV-2 infection had a significantly higher rate of AMR and hospital-onset infections. Antimicrobial and diagnostic stewardship is key to identifying this high-risk AMR population.

6.
BMC Infect Dis ; 22(1): 841, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368931

RESUMO

BACKGROUND: Bloodstream infections (BSIs) are an important cause of morbidity and mortality in hospitalized patients. We evaluate incidence of community- and hospital-onset BSI rates and outcomes before and during the SARS-CoV-2 pandemic. METHODS: We conducted a retrospective cohort study evaluating patients who were hospitalized for ≥ 1 day with discharge or death between June 1, 2019, and September 4, 2021, across 271 US health care facilities. Community- and hospital-onset BSI and related outcomes before and during the SARS-CoV-2 pandemic, including intensive care admission rates, and overall and ICU-specific length of stay (LOS) was evaluated. Bivariate correlations were calculated between the pre-pandemic and pandemic periods overall and by SARS-CoV-2 testing status. RESULTS: Of 5,239,692 patient admissions, there were 20,113 community-onset BSIs before the pandemic (11.2/1000 admissions) and 39,740 (11.5/1000 admissions) during the pandemic (P ≤ 0.0062). Corresponding rates of hospital-onset BSI were 2,771 (1.6/1000 admissions) and 6,864 (2.0/1000 admissions; P < 0.0062). Compared to the pre-pandemic period, rates of community-onset BSI were higher in patients who tested negative for SARS-CoV-2 (15.8/1000 admissions), compared with 9.6/1000 BSI admissions among SARS-CoV-2-positive patients. Compared with patients in the pre-pandemic period, SARS-CoV-2-positive patients with community-onset BSI experienced greater ICU admission rates (36.6% vs 32.8%; P < 0.01), greater ventilator use (10.7% vs 4.7%; P < 0.001), and longer LOS (12.2 d vs 9.1 d; P < 0.001). Rates of hospital-onset BSI were higher in the pandemic vs the pre-pandemic period (2.0 vs 1.5/1000; P < 0.001), with rates as high a 7.3/1000 admissions among SARS-CoV-2-positive patients. Compared to the pre-pandemic period, SARS-CoV-2-positive patients with hospital-onset BSI had higher rates of ICU admission (72.9% vs 55.4%; P < 0.001), LOS (34.8 d vs 25.5 d; P < 0.001), and ventilator use (52.9% vs 21.5%; P < 0.001). Enterococcus species, Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans were more frequently detected in the pandemic period. CONCLUSIONS AND RELEVANCE: This nationally representative study found an increased risk of both community-onset and hospital-onset BSI during the SARS-CoV-2 pandemic period, with the largest increased risk in hospital-onset BSI among SARS-CoV-2-positive patients. SARS-CoV-2 positivity was associated with worse outcomes.


Assuntos
Bacteriemia , COVID-19 , Infecção Hospitalar , Humanos , Pandemias , SARS-CoV-2 , Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Estudos Retrospectivos , Teste para COVID-19 , COVID-19/epidemiologia
7.
Open Forum Infect Dis ; 9(9): ofac420, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36168549

RESUMO

Background: Management of pneumococcal disease is complicated by high rates of antimicrobial resistance (AMR). This study assessed AMR trends for Streptococcus pneumoniae isolates from adults with pneumococcal disease. Methods: From January 2011 to February 2020, we evaluated 30-day nonduplicate S. pneumoniae isolates from 290 US hospitals (BD Insights Research Database) from adults (≥18 years) in inpatient and outpatient settings. Isolates were required to have ≥1 AMR result for invasive (blood, cerebrospinal fluid/neurologic) or noninvasive (respiratory or ear/nose/throat) pneumococcal disease samples. Determination of AMR was based on facility reports of intermediate or resistant. Descriptive statistics and generalized estimated equations were used to assess variations over time. Results: Over the study period, 34 039 S. pneumoniae isolates were analyzed (20 749 [61%] from noninvasive sources and 13 290 [39%] from invasive sources). Almost half (46.6%) of the isolates were resistant to ≥1 drug, and noninvasive isolates had higher rates of AMR than invasive isolates. Total S. pneumoniae isolates had high rates of resistance to macrolides (37.7%), penicillin (22.1%), and tetracyclines (16.1%). Multivariate modeling identified a significant increasing trend in resistance to macrolides (+1.8%/year; P < .001). Significant decreasing trends were observed for penicillin (-1.6%/year; P < .001), extended-spectrum cephalosporins (ESCs; -0.35%/year; P < .001), and ≥3 drugs (-0.5%/year; P < .001). Conclusions: Despite decreasing trends for penicillin, ESCs, and resistance to ≥3 drugs, AMR rates are persistently high in S. pneumoniae isolates among US adults. Increasing macrolide resistance suggests that efforts to address AMR in S. pneumoniae may require antimicrobial stewardship efforts and higher-valent pneumococcal conjugate vaccines.

8.
Microbiol Spectr ; 10(3): e0115822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638777

RESUMO

Adoption of revised antimicrobial susceptibility breakpoints is often slow, potentially leading to underreporting of antimicrobial resistance. We compared facility-reported rates of carbapenem nonsusceptibility (NS; intermediate or resistant) with NS rates based on current Clinical and Laboratory Standards Institute (CLSI) breakpoints for Enterobacterales or Pseudomonas aeruginosa isolates in ambulatory and inpatient adults in the BD Insights Research Database (US) from 2016 to 2020. Overall, 77.4% (937,926/1,211,845) and 90.6% (2,157,785/2,381,824) of nonduplicate Enterobacterales isolates with facility-reported susceptibility results had MIC data for ertapenem (ETP) and imipenem/meropenem/doripenem (IPM/MEM/DOR), respectively; 86.9% (255,844/294,426) of P. aeruginosa isolates had MIC data for IPM/MEM/DOR. Facility-reported susceptibility and susceptibility based on CLSI criteria resulted in comparable carbapenem susceptibility rates (99.3% versus 99.1% for ETP-susceptible Enterobacterales, 98.9% versus 98.4% for IPM/MEM/DOR-susceptible Enterobacterales, and 84.9% versus 83.3% for IPM/MEM/DOR-susceptible P. aeruginosa). However, compared with CLSI criteria, facilities underreported Enterobacterales- and IPM/MEM/DOR-NS isolates by 18.8% and 26.5%, respectively, and P. aeruginosa IPM/MEM/DOR-NS isolates by 9.8%. Underreporting was observed for both intermediate and resistant isolates. Our data suggest that delayed adoption of revised breakpoints has a small but potentially important impact on reported rates of antimicrobial resistance. Facilities should be aware of local epidemiology, evaluate potential underreporting of resistance, and assess the related clinical impact. IMPORTANCE Clinicians often base antimicrobial therapeutic decisions on laboratory determinations of pathogen susceptibility to an antibiotic based on MIC breakpoints. MIC breakpoints evolve over time based on new information; between 2010 and 2012 the CLSI lowered carbapenem breakpoints for Enterobacterales and Pseudomonas aeruginosa, and these were subsequently adopted by the US Food and Drug Administration. Carbapenems are important therapeutic options for these difficult-to-treat pathogens, so understanding resistance rates is critically important. However, laboratories can be slow to adopt updated breakpoints. We used MIC data to evaluate whether reports received by hospitals for carbapenem susceptibility were consistent with updated CLSI breakpoints. Although overall susceptibility rates were similar between hospital reports and susceptibility based on updated CLSI criteria, the percentages of carbapenem-resistant isolates were significantly underreported by hospital reports. Delayed adoption of MIC breakpoints may impact epidemiological understanding of resistance and contribute to the spread of resistant pathogens.


Assuntos
Carbapenêmicos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Laboratórios Clínicos , Testes de Sensibilidade Microbiana
9.
Diagn Microbiol Infect Dis ; 103(4): 115717, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35635889

RESUMO

Antimicrobial resistance in Enterobacterales has made empiric therapy for hospitalized patients with urinary tract infections (UTIs) more challenging. We analyzed the antibiotic susceptibility of nonduplicate Enterobacterales isolates from urine cultures tested at US hospitals in the BD Insights Research Database (2011-2020). Multivariable generalized estimating equation models were used to assess resistance trends over time. A total of 322 US hospitals provided data on 876,507 urinary Enterobacterales isolates (62.4% Escherichia coli). Enterobacterales antibiotic resistance rates were 64.6%, 29.3%, 27.6%, and 26.3% for beta-lactams, fluoroquinolones, nitrofurantoin, and trimethoprim/sulfamethoxazole, respectively, and 12.4% had an extended-spectrum beta-lactamase (ESBL) phenotype. In multivariable models, rates of ESBL isolates and isolates resistant to ≥3 drug classes increased significantly between 2011 and 2020, while other categories of resistance generally decreased. We conclude that antimicrobial resistance is common in urinary Enterobacterales isolates. Management of UTIs should be guided by urine culture data and may benefit from new therapies.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Estados Unidos/epidemiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , beta-Lactamases/genética
10.
Int J Infect Dis ; 119: 142-145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364285

RESUMO

Antimicrobial resistance (AMR) can complicate effective management of urinary tract infections. We conducted a retrospective study of AMR in Enterobacterales urine isolates from ambulatory and hospitalized adult patients from 2018-2020 (BD Insights Research Database) to evaluate regional differences in isolates with an extended-spectrum beta-lactamase-producing phenotype and those not susceptible to beta-lactams, fluoroquinolone (FQ), nitrofurantoin (NFT), trimethoprim/sulfamethoxazole (TMP/SMX), or multiple antibiotic classes (≥ 2 or ≥ 3). Our analyses included 349,741 Enterobacterales urine isolates from 321 inpatient facilities and 980,354 isolates from 338 ambulatory care facilities. In multivariable analyses, the highest rate of resistance was to beta-lactams (60.8% and 55.8% for inpatient and ambulatory settings, respectively), followed by FQ (27.5%), NFT (27.0%), and TMP/SMX (25.4%) for inpatients and by TMP/SMX (22.4%), FQ (21.6%), and NFT (21.6%) for ambulatory patients. Isolates with an extended-spectrum beta-lactamase-producing phenotype (13.2% and 8.6% for inpatient and ambulatory settings, respectively) and multidrug resistance (inpatient and ambulatory rates of 23.4% and 17.7% for ≥ 2 drugs; 9.9% and 6.4% for ≥ 3 drugs) were also prevalent. Statistically significant differences by geographic region (P ≤ 0.005) were observed for AMR classes in both inpatient and ambulatory settings, but the rates remained above the thresholds recommended for empiric urinary tract infection therapy across most regions.


Assuntos
Farmacorresistência Bacteriana , Enterobacteriaceae , Infecções Urinárias , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Estados Unidos/epidemiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , beta-Lactamases/genética , beta-Lactamas/farmacologia
11.
Open Forum Infect Dis ; 9(3): ofac039, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35237702

RESUMO

BACKGROUND: Viral infections are often treated with empiric antibiotics due to suspected bacterial coinfections, leading to antibiotic overuse. We aimed to describe antibiotic resistance (ABR) trends and their association with the influenza season in ambulatory and inpatient settings in the United States. METHODS: We used the BD Insights Research Database to evaluate antibiotic susceptibility profiles in 30-day nonduplicate bacterial isolates collected from patients >17 years old at 257 US healthcare institutions from 2011 to 2019. We investigated ABR in Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) and Gram-negative (Enterobacterales [ENT], Pseudomonas aeruginosa [PSA], and Acinetobacter baumannii spp [ACB]) bacteria expressed as the proportion of isolates not susceptible ([NS], intermediate or resistant) and resistance per 100 admissions (inpatients only). Antibiotics included carbapenems (Carb), fluoroquinolones (FQ), macrolides, penicillin, extended-spectrum cephalosporins (ESC), and methicillin. Generalized estimating equations models were used to evaluate monthly trends in ABR outcomes and associations with community influenza rates. RESULTS: We identified 8 250 860 nonduplicate pathogens, including 154 841 Gram-negative Carb-NS, 1 502 796 Gram-negative FQ-NS, 498 012 methicillin-resistant S aureus (MRSA), and 44 131 NS S pneumoniae. All S pneumoniae rates per 100 admissions (macrolide-, penicillin-, and ESC-NS) were associated with influenza rates. Respiratory, but not nonrespiratory, MRSA was also associated with influenza. For Gram-negative pathogens, influenza rates were associated with the percentage of FQ-NS ENT, FQ-NS PSA, and Carb-NS ACB. CONCLUSIONS: Our study showed expected increases in rates of ABR Gram-positive and identified small but surprising increases in ABR Gram-negative pathogens associated with influenza activity. These insights may help inform antimicrobial stewardship initiatives.

12.
BMC Infect Dis ; 22(1): 194, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227203

RESUMO

BACKGROUND: Urinary tract infections (UTIs), which are usually caused by bacteria in the Enterobacterales family, are a common reason for outpatient visits. Appropriate empiric therapy for UTIs requires an understanding of antibiotic resistance in the community. In this nationwide study, we examined trends in antibiotic resistance in urinary Enterobacterales isolates from ambulatory patients in the United States (US). METHODS: We analyzed the antimicrobial susceptibility profiles (extended-spectrum beta-lactamase [ESBL]-producing phenotype and not susceptible [NS] to beta-lactams, trimethoprim/sulfamethoxazole [TMP/SMX], fluoroquinolones [FQ], or nitrofurantoin [NFT]) of 30-day non-duplicate Enterobacterales isolates from urine cultures tested at ambulatory centers in the BD Insights Research Database (2011-2020). The outcome of interest was the percentage of resistant isolates by pathogen and year. Multi-variable generalized estimating equation models were used to assess trends in resistance over time and by additional covariates. RESULTS: A total of 338 US facilities provided data for > 2.2 million urinary Enterobacterales isolates during the 10-year study. Almost three-quarters (72.8%) of Enterobacterales isolates were Escherichia coli. Overall unadjusted resistance rates in Enterobacterales isolates were 57.5%, 23.1%, 20.6%, and 20.2% for beta-lactams, TMP/SMX, FQ, and NFT, respectively, and 6.9% had an ESBL-producing phenotype. Resistance to two or more antibiotic classes occurred in 16.4% of isolates and 5.5% were resistant to three or more classes. Among isolates with an ESBL-producing phenotype, 70.1%, 59.9%, and 33.5% were NS to FQ, TMP/SMX, and NFT, respectively. In multivariable models, ESBL-producing and NFT NS Enterobacterales isolates increased significantly (both P < 0.001), while other categories of resistance decreased. High rates (≥ 50%) of beta-lactam and NFT resistance were observed in Klebsiella isolates and in non-E. coli, non-Klebsiella Enterobacterales isolates. CONCLUSIONS: Antimicrobial resistance was common in urinary Enterobacterales isolates. Isolates with an ESBL-producing phenotype increased by about 30% between 2011 and 2020, and significant increases were also observed in NFT NS Enterobacterales isolates. Resistance rates for all four antibiotic classes were higher than thresholds recommended for use as empiric therapy. Non-E. coli Enterobacterales isolates showed high levels of resistance to commonly used empiric antibiotics, including NFT. These data may help inform empiric therapy choices for outpatients with UTIs.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Nitrofurantoína , Estados Unidos/epidemiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...