Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344664

RESUMO

Additively manufactured (AM) porous metallic biomaterials, in general, and AM porous titanium, in particular, have recently emerged as promising candidates for bone substitution. The porous design of such materials allows for mimicking the elastic mechanical properties of native bone tissue and showed to be effective in improving bone regeneration. It is, however, not clear what role the other mechanical properties of the bulk material such as ductility play in the performance of such biomaterials. In this study, we compared the bone tissue regeneration performance of AM porous biomaterials made from the commonly used titanium alloy Ti6Al4V-ELI with that of commercially pure titanium (CP-Ti). CP-Ti was selected because of its high ductility as compared to Ti6Al4V-ELI. Critical-sized (6 mm diameter) femoral defects in rats were treated with implants made from both Ti6Al4V-ELI and CP-Ti. Bone regeneration was assessed up to 11 weeks using micro-CT scanning. The regenerated bone volume was assessed ex vivo followed by histology and biomechanical testing to assess osseointegration of the implants. The bony defects treated with AM CP-Ti implants generally showed higher volumes of regenerated bone as compared to those treated with AM Ti6Al4V-ELI. The torsional strength of the two titanium groups were similar however, and both considerably lower than those measured for intact bony tissue. These findings show the importance of material type and ductility of the bulk material in the ability for bone tissue regeneration of AM porous biomaterials.

2.
Mater Sci Eng C Mater Biol Appl ; 54: 94-100, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046272

RESUMO

Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants.


Assuntos
Próteses e Implantes , Titânio/química , Ligas , Materiais Biocompatíveis/química , Força Compressiva , Lasers , Teste de Materiais , Porosidade , Propriedades de Superfície , Tantálio/química , Suporte de Carga
3.
Acta Biomater ; 14: 217-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25500631

RESUMO

The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.


Assuntos
Próteses e Implantes , Tantálio/farmacologia , Animais , Linhagem Celular , Força Compressiva/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Humanos , Lasers , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Radiografia , Ratos Wistar , Torção Mecânica
4.
Biomaterials ; 35(24): 6172-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24811260

RESUMO

The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Titânio/farmacologia , Adolescente , Animais , Apatitas/farmacologia , Substitutos Ósseos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Temperatura Alta , Humanos , Ácido Clorídrico/farmacologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Periósteo/citologia , Periósteo/efeitos dos fármacos , Periósteo/ultraestrutura , Porosidade , Ratos Wistar , Hidróxido de Sódio/farmacologia , Soluções , Espectrometria por Raios X , Ácidos Sulfúricos/farmacologia , Propriedades de Superfície , Alicerces Teciduais/química , Titânio/química , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...