Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 8(1): 26, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821747

RESUMO

BACKGROUND: In radionuclide therapy, to enhance therapeutic efficacy, an intriguing alternative is to ensure the simultaneous implementation of low- and high-LET radiation emitted from a one radionuclide. In the present study, we introduce the concept of utilizing 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator. In this system, 109Pd emits beta particles of medium energy, while 109mAg releases a cascade of conversion and Auger electrons. 109Pd was utilized in the form of 15 nm gold nanoparticles, which were coated with a monolayer of 109Pd. In this system, the 109Pd atoms are on the surface of the nanoparticle, while the 109mAg atoms generated in the decay reaction possess the capability for unhindered emission of Auger electrons. RESULTS: 109Pd, obtained through neutron irradiation of natural palladium, was deposited onto 15-nm gold nanoparticles, exceeding a efficiency rate of 95%. In contrast to previously published data on in vivo generators based on chelators, where the daughter radionuclide diffuses away from the molecules, daughter radionuclide 109mAg remains on the surface of gold nanoparticles after the decay of 109Pd. To obtain a radiobioconjugate with an affinity for HER2 receptors, polyethylene glycol chains and the monoclonal antibody trastuzumab were attached to the Au@Pd nanoparticles. The synthesized bioconjugate contained an average of 9.5 trastuzumab molecules per one nanoparticle. In vitro cell studies indicated specific binding of the Au@109Pd-PEG-trastuzumab radiobioconjugate to the HER2 receptor on SKOV-3 cells, resulting in 90% internalization. Confocal images illustrated the accumulation of Au@109Pd-PEG-trastuzumab in the perinuclear area surrounding the cell nucleus. Despite the lack of nuclear localization, which is necessary to achieve an effective cytotoxic effect of Auger electrons, a substantial cytotoxic effect, significantly greater than that of pure ß- and pure Auger electron emitters was observed. We hypothesize that in the studied system, the cytotoxic effect of the Auger electrons could have also occurred through the damage to the cell's nuclear membrane by Auger electrons emitted from nanoparticles accumulated in the perinuclear area. CONCLUSION: The obtained results show that trastuzumab-functionalized 109Pd-labeled nanoparticles can be suitable for the application in combined ß--Auger electron targeted radionuclide therapy. Due to both components decay (ß- and conversion/Auger electrons), the 109Pd/109mAg in vivo generator presents unique potential in this field. Despite the lack of nuclear localization, which is highly required for efficient Auger electron therapy, an adequate cytotoxic effect was attained.

2.
Nanoscale Adv ; 5(12): 3293-3303, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325536

RESUMO

Convenient therapeutic protocols against hepatocellular carcinoma (HCC) exhibit low treatment effectiveness, especially in the context of long-term effects, which is primarily related to late diagnosis and high tumor heterogeneity. Current trends in medicine concern combined therapy to achieve new powerful tools against the most aggressive diseases. When designing modern, multimodal therapeutics, it is necessary to look for alternative routes of specific drug delivery to the cell, its selective (with respect to the tumor) activity and multidirectional action, enhancing the therapeutic effect. Targeting the physiology of the tumor makes it possible to take advantage of certain characteristic properties of the tumor that differentiate it from other cells. In the present paper we designed for the first time iodine-125 labeled platinum nanoparticles for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. High selectivity achieved by targeting the tumor microenvironment of these cells was associated with effective radionuclide desorption in the presence of H2O2. The therapeutic effect was found to be correlated with cell damage at various molecular levels including DNA DSBs and was observed in a dose-dependent manner. A three-dimensional tumor spheroid revealed successful radioconjugate anticancer activity with a significant treatment response. A possible concept for clinical application after prior in vivo trials may be achieved via transarterial injection of micrometer range lipiodol emulsions with encapsulated 125I-NP. Ethiodized oil gives several advantages especially for HCC treatment; thus bearing in mind a suitable particle size for embolization, the obtained results highlight the exciting prospects for the development of PtNP-based combined therapy.

3.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985421

RESUMO

Recently, targeted nanoparticles (NPs) have attracted much attention in cancer treatment due to their high potential as carriers for drug delivery. In this article, we present a novel bioconjugate (DOX-AuNPs-Tmab) consisting of gold nanoparticles (AuNPs, 30 nm) attached to chemotherapeutic agent doxorubicin (DOX) and a monoclonal antibody, trastuzumab (Tmab), which exhibited specific binding to HER2 receptors. The size and shape of synthesized AuNPs, as well as their surface modification, were analyzed by the TEM (transmission electron microscopy) and DLS (dynamic light scattering) methods. Biological studies were performed on the SKOV-3 cell line (HER2+) and showed high specificity of binding to the receptors and internalization capabilities, whereas MDA-MB-231 cells (HER2-) did not. Cytotoxicity experiments revealed a decrease in the metabolic activity of cancer cells and surface area reduction of spheroids treated with DOX-AuNPs-Tmab. The bioconjugate induced mainly cell cycle G2/M-phase arrest and late apoptosis. Our results suggest that DOX-AuNPs-Tmab has great potential for targeted therapy of HER2-positive tumors.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ouro , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986710

RESUMO

This study was performed to synthesize multimodal radiopharmaceutical designed for the diagnosis and treatment of prostate cancer. To achieve this goal, superparamagnetic iron oxide (SPIO) nanoparticles were used as a platform for targeting molecule (PSMA-617) and for complexation of two scandium radionuclides, 44Sc for PET imaging and 47Sc for radionuclide therapy. TEM and XPS images showed that the Fe3O4 NPs have a uniform cubic shape and a size from 38 to 50 nm. The Fe3O4 core are surrounded by SiO2 and an organic layer. The saturation magnetization of the SPION core was 60 emu/g. However, coating the SPIONs with silica and polyglycerol reduces the magnetization significantly. The obtained bioconjugates were labeled with 44Sc and 47Sc, with a yield higher than 97%. The radiobioconjugate exhibited high affinity and cytotoxicity toward the human prostate cancer LNCaP (PSMA+) cell line, much higher than for PC-3 (PSMA-) cells. High cytotoxicity of the radiobioconjugate was confirmed by radiotoxicity studies on LNCaP 3D spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.

5.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982357

RESUMO

This study was performed to synthesize a radiopharmaceutical designed for multimodal hepatocellular carcinoma (HCC) treatment involving radionuclide therapy and magnetic hyperthermia. To achieve this goal, the superparamagnetic iron oxide (magnetite) nanoparticles (SPIONs) were covered with a layer of radioactive gold (198Au) creating core-shell nanoparticles (SPION@Au). The synthesized SPION@Au nanoparticles exhibited superparamagnetic properties with a saturation magnetization of 50 emu/g, which is lower than reported for uncoated SPIONs (83 emu/g). Nevertheless, the SPION@Au core-shell nanoparticles showed a sufficiently high saturation magnetization value which allows them to reach a temperature of 43 °C at a magnetic field frequency of 386 kHz. The cytotoxic effect of nonradioactive and radioactive SPION@Au-polyethylene glycol (PEG) bioconjugates was carried out by treating HepG2 cells with various concentrations (1.25-100.00 µg/mL) of the compound and radioactivity in range of 1.25-20 MBq/mL. The moderate cytotoxic effect of nonradioactive SPION@Au-PEG bioconjugates on HepG2 was observed. The cytotoxic effect associated with the ß- radiation emitted by 198Au was much greater and already reaches a cell survival fraction below 8% for 2.5 MBq/mL of radioactivity after 72 h. Thus, the killing of HepG2 cells in HCC therapy should be possible due to the combination of the heat-generating properties of the SPION-198Au-PEG conjugates and the radiotoxicity of the radiation emitted by 198Au.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Nanopartículas de Magnetita , Humanos , Carcinoma Hepatocelular/radioterapia , Ouro , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Hipertermia , Fenômenos Magnéticos
6.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499101

RESUMO

Overcoming the limitations for efficient and selective drug delivery is one of the most challenging obstacles for newly designed anticancer agents. In this study, we present two types of platinum-based nanoparticles (NP), ultrasmall 2 nm PtNPs and core-shell 30 nm Au@Pt, which can be highly cytotoxic in an oxidative environment and remain biologically inactive in cells with lower oxidative status. Our research highlighted the differences in platinum nanoparticle-induced chemotoxicity and is the first study examining its mechanism as a substantial aspect of Au@Pt/PtNPs biological activity. Selectively induced oxidative stress was found to be a primary trigger of NPs' toxicity. Significant differences between Au@Pt and PtNPs were observed especially during 24 h treatment, due to successful intranuclear PtNPs location (~13% of internalized fraction). Reactive oxygen species (ROS)-level induced from both NPs types were similar, while reduction of reduced glutathione (GSH) intracellular content was stronger after treatment with PtNPs. Any biological activity was found in HER2+ breast cancer cells, which have only slightly increased oxidative status. Platinum-containing nanoparticles are an interesting tool for the improvement of selectivity in anticancer therapies against hepatocellular carcinoma (HCC). Due to intranuclear uptake, 2 nm PtNPs seems to be more promising for further research for HCC therapy.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Nanopartículas , Humanos , Platina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
7.
Materials (Basel) ; 15(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161087

RESUMO

The concept of nanoparticle-mediated radionuclide delivery in the cancer treatment has been widely discussed in the past decade. In particular, the use of inorganic and organic nanostructures in the development of radiopharmaceuticals enables the delivery of medically important radioisotopes for radionuclide therapy. In this review, we present the development of nanostructures for cancer therapy with Auger electron radionuclides. Following that, different types of nanoconstructs that can be used as carriers for Auger electron emitters, design principles, nanoparticle materials, and target vectors that overcame the main difficulties are described. In addition, systems in which high-Z element nanoparticles are used as radionuclide carriers, causing the emission of photoelectrons from the nanoparticle surface, are presented. Finally, future research opportunities in the field are discussed as well as issues that must be addressed before nanoparticle-based Auger electron radionuclide therapy can be transferred to clinical use.

8.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916671

RESUMO

193mPt and 195mPt radionuclides are therapeutically attractive Auger electron emitters with notably high Auger electron yield per decay. The present paper summarizes the first step of research on the applications of core-shell (Au@Pt) nanoparticles for electron Auger therapy of HER2+ (human epidermal growth factor receptor 2) breast cancer and hepatocellular carcinoma. Gold nanoparticles (30 nm) were synthesized covered with a platinum shell at high efficiency (>80%) and were further evaluated for in vitro studies such as binding affinity, internalization and cytotoxicity. To find the mechanism(s) responsible for platinum cytotoxicity in HepG2 cells, the platinum concentration in isolated cell nuclei and cytoplasm was determined using ICP-MS (inductively coupled plasma mass spectrometry). Lack of platinum in cell nuclei suggests that the cytotoxic effect is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Studies carried out on the SKOV-3 cell line with the use of a synthesized targeting bioconjugate (Au@Pt-PEG-trastuzumab) revealed a high affinity of this preparation to HER2+ cells, its internalization, its placement in the perinuclear area and partial intranuclear location. The specific binding for HER2 negative cells, MDA-MB-231, was negligible and Au@Pt-PEG-trastuzumab did not enter these cells. The results obtained are promising and warrant future investigation of Auger electron therapy using 193mPt and 195mPt based radiopharmaceuticals.


Assuntos
Neoplasias da Mama/terapia , Carcinoma Hepatocelular/terapia , Elétrons , Ouro/química , Neoplasias Hepáticas/terapia , Nanopartículas Metálicas/química , Platina/química , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Hidrodinâmica , Imageamento Tridimensional , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Radioisótopos/uso terapêutico , Eletricidade Estática , Trastuzumab/uso terapêutico
9.
Nanomaterials (Basel) ; 10(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668687

RESUMO

Recent advances in the field of nanotechnology application in nuclear medicine offer the promise of better therapeutic options. In recent years, increasing efforts have been made on developing nanoconstructs that can be used as carriers for immobilising alpha (α)-emitters in targeted drug delivery. In this publication, we provide a comprehensive overview of available information on functional nanomaterials for targeted alpha therapy. The first section describes why nanoconstructs are used for the synthesis of α-emitting radiopharmaceuticals. Next, we present the synthesis and summarise the recent studies demonstrating therapeutic applications of α-emitting labelled radiobioconjugates in targeted therapy. Finally, future prospects and the emerging possibility of therapeutic application of radiolabelled nanomaterials are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...