Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Gut ; 73(7): 1076-1086, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38670631

RESUMO

BACKGROUND AND AIMS: Eosinophilic oesophagitis (EoE) is characterised by symptoms of esophageal dysfunction and oesinophil tissue infiltration. The EoE Diagnostic Panel (EDP) can distinguish between active and non-active EoE using a set of 77 genes. Recently, the existence of distinct EoE variants featuring symptoms similar to EoE, such as oesophageal dysfunction but lacking eosinophil infiltration, had been determined. METHODS: We used oesophageal biopsies from patients with histologically active (n=10) and non-active EoE (n=9) as well as from healthy oesophageal controls (n=5) participating in the Swiss Eosinophilic Esophagitis Cohort Study (SEECS) and analysed the gene expression profile in these biopsies by total RNA-sequencing (RNA-seq). Moreover, we employed the publicly accessible RNA-seq dataset (series GSE148381) as reported by Greuter et al, encompassing a comprehensive genomic profile of patients presenting with EoE variants. RESULTS: A novel, diagnostic gene expression panel that can effectively distinguish patients with histologically active conventional EoE from patients with EoE in histological remission and control individuals, and from three newly discovered EoE variants was identified. Histologically Active EoE Diagnostic Panel (HAEDP) consists of 53 genes that were identified based on differential expression between histologically active EoE, histological remission and controls (p≤0.05). By combining the HAEDP with EDP, we expanded our knowledge about factors that may contribute to the inflammation in EoE and improved our understanding of the underlying mechanisms of the disease. Conversely, we suggested a compact group of genes common to both HAEDP and EDP to create a reliable diagnostic tool that might enhance the accuracy of EoE diagnosis. CONCLUSION: We identified a novel set of 53 dysregulated genes that are closely associated with the histological inflammatory activity of EoE. In combination with EDP, our new panel might be a valuable tool for the accurate diagnosis of patients with EoE as well as for monitoring their disease course.


Assuntos
Esofagite Eosinofílica , Transcriptoma , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Esofagite Eosinofílica/diagnóstico , Humanos , Feminino , Masculino , Adulto , Biópsia , Pessoa de Meia-Idade , Adolescente , Esôfago/patologia , Perfilação da Expressão Gênica/métodos , Estudos de Casos e Controles , Adulto Jovem
2.
Clin Nutr ; 42(12): 2422-2433, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871483

RESUMO

BACKGROUND AND AIMS: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs). METHODS: PBMCs were treated with different doses of n-3-rich Omegaven and n-6-rich Intralipid and the immune cells were characterized by flow cytometry. RESULTS: We show that incubation of PBMCs with n-3-rich Omegaven leads to an increase in expression of CD1d and CD86 in CD14+monocytes. At the same time, an increased number of NKT cells expressing cytotoxic T cell antigen 4 is observed, suggesting immunological synapse formation. Both CD14+monocytes and NKT cells showed an increase in IL-10 production and a reduction in the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-4, which led to an increase in the number of FOXP3+T regulatory cells. In addition, we show that n-3-rich Omegaven reduces the expression of TNFα, IFNγ and IL-4 in CD4+T and CD8+T cells independent of the presented interaction between CD14+monocytes and NKT cells. The described mechanism of n-3 rich lipid emulsions was confirmed in PBMCs from patients with inflammatory bowel disease but not in colorectal cancer patients which seem to lack the interaction between CD14+monocytes and NKT cells. CONCLUSIONS: These results show a mechanism for the beneficial effect of the n-3-rich Omegaven in patients with inflammatory conditions but questions its use in patients with cancer. Hence, our results may assist in choosing the best lipid emulsion for patients who require PN.


Assuntos
Ácidos Graxos Ômega-3 , Humanos , Ácidos Graxos Ômega-3/farmacologia , Emulsões/farmacologia , Interleucina-4 , Leucócitos Mononucleares/metabolismo , Nutrição Parenteral/métodos , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios
3.
J Crohns Colitis ; 17(9): 1489-1503, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36995738

RESUMO

BACKGROUND AND AIMS: Exacerbated immune activation, intestinal dysbiosis and a disrupted intestinal barrier are common features among inflammatory bowel disease [IBD] patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS: We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2-/- mice by endoscopy, histology and analysis of markers of molecular inflammation. The effects on the intestinal microbiome were determined by 16S rDNA sequencing of mouse faeces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS: Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 [PTPN2], its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION: Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome and preserving epithelial barrier integrity in a PTPN2-dependent manner.

4.
Cell Mol Gastroenterol Hepatol ; 15(3): 717-739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36516930

RESUMO

BACKGROUND & AIMS: Glycoprotein (GP)96 is an endoplasmic reticulum-resident master chaperone for cell surface receptors including the Wnt co-receptors low-density lipoprotein-receptor-related protein 5/6. Intestinal epithelial cell (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche is unknown. Here, we investigated how GP96 loss interferes with intestinal homeostasis by compromising viability, proliferation, and differentiation of IECs. METHODS: Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2 (Cre recombinase-Estrogen-Receptor Transgene 2) mice and intestinal organoids. With H&E and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC types. Real-time polymerase chain reaction and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS: IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by complete eradication of the epithelial layer and death within a few days. These effects were owing to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of endoplasmic reticulum stress. Although effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS: Our work shows that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and therefore is indispensable for maintaining intestinal epithelial homeostasis.


Assuntos
Células Epiteliais , Intestinos , Glicoproteínas de Membrana , Animais , Camundongos , Proliferação de Células , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Intestinos/citologia , Via de Sinalização Wnt/genética , Glicoproteínas de Membrana/metabolismo
5.
Gut ; 72(6): 1101-1114, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36191962

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN: Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS: In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION: Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.


Assuntos
Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Nanopartículas , Camundongos , Animais , Doença de Crohn/genética , Doença de Crohn/complicações , Linfócitos T CD8-Positivos/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Inflamação/complicações , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética
6.
Cells ; 11(14)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883643

RESUMO

Lipid emulsions are crucial for life-saving total parenteral nutrition (TPN). Their composition provides a high amount of essential fatty acids and calories for millions of patients with serious diseases. Nevertheless, several TPN-mediated side-effects have been reported in over 90% of patients. This project aimed to investigate the effect of a high amount of ω3 fatty acids (Omegaven®) emulsion vs. a high amount of ω6 fatty acids (Intralipid®) emulsions on the endothelial barrier function. EA.hy926 cell line was cultured and incubated with 0.01, 0.1, and 1 mM lipid emulsions. The influence of these lipid emulsions on the barrier function was assessed using ECIS technology, immunofluorescent microscopy, viability measurements by flow cytometry, multiplex cytokines analysis, and qRT-PCR. BODIPY staining confirmed the uptake of fatty acids by endothelial cells. ECIS measurements demonstrated that a high concentration of Omegaven® prevents barrier formation and impairs the barrier function by inducing cell detachment. Moreover, the expression of VE-cadherin and F-actin formation showed a reorganization of the cell structure within 2 h of 1 mM Omegaven® addition. Interestingly, the study's findings contradict previous studies and revealed that Omegaven® at high concentration, but not Intralipid, induces cell detachments, impairing endothelial cells' barrier function. In summary, our studies shed new light on the effect of lipid emulsions on the endothelium.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Emulsões/farmacologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe , Humanos , Triglicerídeos
7.
NanoImpact ; 25: 100374, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559880

RESUMO

Plastic pollution is a major global challenge of our times, baring a potential threat for the environment and the human health. The increasing abundance of nanoplastic (NP) and microplastic (MP) particles in the human diet might negatively affect human health since they - particularly in patients suffering from inflammatory bowel disease (IBD) - might surpass the intestinal barrier. To investigate whether ingested plastic particles cross the intestinal epithelium and promote bowel inflammation, mice were supplemented with NP or MP polystyrene (PS) particles for 24 or 12 weeks before inducing acute or chronic dextran sodium sulfate (DSS) colitis with continuous plastic administration. Although ingested PS particles accumulated in the small intestine and organs distant from the gastrointestinal tract, PS ingestion did not affect intestinal health nor did it promote colitis severity. Although the lack of colitis-promoting effects of small PS particles might be a relief for IBD patients, potential accumulative effects of ingested plastic particles on the gastrointestinal health cannot be excluded.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Microplásticos , Plásticos , Poliestirenos
8.
Stem Cell Rev Rep ; 18(4): 1309-1321, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038103

RESUMO

Intestinal stem cells (ISC) are characterized by their ability to continuously self-renew and differentiate into various functionally distinct intestinal epithelial cell types. Impaired stem cell proliferation and differentiation can cause severe dysfunction of the gastrointestinal tract and lead to the development of several clinical disorders. Animal mouse models provide a valuable platform to study ISC function, disease mechanisms, and the intestinal epithelium's regenerative capacity upon tissue damage. However, advanced in vitro systems that are more relevant to human physiology are needed to understand better the diverse disease-triggering factors and the heterogeneity in clinical manifestations. Intestinal biopsies from patients might serve as potent starting material for such "gut-in-a-dish" approaches. While many promising tools for intestinal tissue processing, in vitro expansion, and downstream analysis have been developed in recent years, a comprehensive guide with recommendations to successfully launch or improve intestinal stem cell culture is missing. In this review, we present a selection of currently established methods, highlight recent publications and discuss the potential and limitations of those methodological approaches to facilitate and support the future design of novel and more personalized therapeutic options.


Assuntos
Mucosa Intestinal , Organoides , Animais , Diferenciação Celular , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Células-Tronco
9.
Cells ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944097

RESUMO

Background: The single nucleotide polymorphism (SNP) rs1042058 within the gene locus encoding tumor progression locus 2 (TPL2) has been recently identified as a risk gene for inflammatory bowel disease (IBD). TPL2 has been shown to regulate pro-inflammatory signaling and cytokine secretion, while inhibition of TPL2 decreases intestinal inflammation in vivo. However, the clinical and molecular implications of this disease-associated TPL2 variation in IBD patients have not yet been studied. Methods: We analyzed the impact of the IBD-associated TPL2 variation using clinical data of 2145 genotyped patients from the Swiss IBD Cohort Study (SIBDCS). Furthermore, we assessed the molecular consequences of the TPL2 variation in ulcerative colitis (UC) and Crohn's disease (CD) patients by real-time PCR and multiplex ELISA of colon biopsies or serum, respectively. Results: We found that presence of the SNP rs1042058 within the TPL2 gene locus results in significantly higher numbers of CD patients suffering from peripheral arthritis. In contrast, UC patients carrying this variant feature a lower risk for intestinal surgery. On a molecular level, the presence of the rs1042058 (GG) IBD-risk polymorphism in TPL2 was associated with decreased mRNA levels of IL-10 in CD patients and decreased levels of IL-18 in the intestine of UC patients. Conclusions: Our data suggest that the presence of the IBD-associated TPL2 variation might indicate a more severe disease course in CD patients. These results reveal a potential therapeutic target and demonstrate the relevance of the IBD-associated TPL2 SNP as a predictive biomarker in IBD.


Assuntos
Progressão da Doença , Loci Gênicos , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , MAP Quinase Quinase Quinases/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Adolescente , Adulto , Alelos , Artrite/sangue , Artrite/genética , Colite Ulcerativa/sangue , Colite Ulcerativa/genética , Colite Ulcerativa/cirurgia , Doença de Crohn/sangue , Doença de Crohn/genética , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Análise Fatorial , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Adulto Jovem
10.
Pharmacol Res Perspect ; 9(4): e00837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34289267

RESUMO

Asthma is a heterologous disease that is influenced by complex interactions between multiple environmental exposures, metabolism, and host immunoregulatory processes. Specific metabolites are increasingly recognized to influence respiratory inflammation. However, the role of protein-derived metabolites in regulating inflammatory responses in the lung are poorly described. The aims of the present study were to quantify polyamine levels in bronchoalveolar lavages (BALs) from healthy volunteers and asthma patients, and to evaluate the impact of each polyamine on inflammatory responses using in vitro models and in a house dust mite (HDM)-induced respiratory allergy model. Spermidine levels were decreased, while cadaverine levels were increased in BALs from asthma patients compared to healthy controls, using Ultra Performance Liquid Chromatography (UPLC). Both spermine and spermidine inhibit lipopolysaccharide (LPS)-induced cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) in vitro. In addition, oral gavage with spermine or spermidine modulate HDM-induced cell infiltration, cytokine secretion, and epithelial cell tight junction expression in murine models. Spermidine also reduces airway hyper-responsiveness. These results suggest that modulation of polyamine metabolism, in particular spermidine, is associated with respiratory inflammation and these molecules and pathways should be further explored as biomarkers of disease and potential targets for novel therapies.


Assuntos
Asma/metabolismo , Pulmão/metabolismo , Poliaminas/metabolismo , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia
11.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201918

RESUMO

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) plays a critical role in the pathogenesis of inflammatory bowel diseases (IBD). Mice lacking PTPN2 in dendritic cells (DCs) develop skin and liver inflammation by the age of 22 weeks due to a generalized loss of tolerance leading to uncontrolled immune responses. The effect of DC-specific PTPN2 loss on intestinal health, however, is unknown. The aim of this study was to investigate the DC-specific role of PTPN2 in the intestine during colitis development. PTPN2fl/flxCD11cCre mice were subjected to acute and chronic DSS colitis as well as T cell transfer colitis. Lamina propria immune cell populations were analyzed using flow cytometry. DC-specific PTPN2 deletion promoted infiltration of B and T lymphocytes, macrophages, and DCs into the lamina propria of unchallenged mice and elevated Th1 abundance during acute DSS colitis, suggesting an important role for PTPN2 in DCs in maintaining intestinal immune cell homeostasis. Surprisingly, those immune cell alterations did not translate into increased colitis susceptibility in acute and chronic DSS-induced colitis or T cell transfer colitis models. However, macrophage depletion by clodronate caused enhanced colitis severity in mice with a DC-specific loss of PTPN2. Loss of PTPN2 in DCs affects the composition of lamina propria lymphocytes, resulting in increased infiltration of innate and adaptive immune cells. However, this did not result in an elevated colitis phenotype, likely because increased infiltration of macrophages in the intestine upon loss of PTPN2 loss in DCs can compensate for the inflammatory effect of PTPN2-deficient DCs.


Assuntos
Colite/etiologia , Colite/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Animais , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia
12.
Gut Microbes ; 13(1): 1949096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34313550

RESUMO

Crohn's disease (CD) is a major form of inflammatory bowel disease characterized by transmural inflammation along the alimentary tract. Changes in the microbial composition and reduction in species diversity are recognized as pivotal hallmarks in disease dynamics, challenging the gut barrier function and shaping a pathological immune response in genetically influenced subjects. The purpose of this review is to delve into the modification of the gut microbiota cluster network during CD progression and to discuss how this shift compromises the gut barrier integrity, granting the translocation of microbes and their products. We then complete the scope of the review by retracing gut microbiota dysbiosis interactions with the main pathophysiologic factors of CD, starting from the host's genetic background to the immune inflammatory and fibrotic processes, providing a standpoint on the lifestyle/exogenous factors and the potential benefits of targeting a specific gut microbiota.


Assuntos
Translocação Bacteriana , Doença de Crohn/complicações , Doença de Crohn/microbiologia , Doença de Crohn/fisiopatologia , Disbiose/etiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Fibrose/etiologia , Fibrose/microbiologia , Humanos , Inflamação/etiologia , Inflamação/microbiologia
13.
Inflamm Bowel Dis ; 27(12): 1986-1998, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33847343

RESUMO

BACKGROUND: Vedolizumab is a widely used and safe therapy in inflammatory bowel disease, particularly in ulcerative colitis (UC), making it a promising candidate for enhanced efficacy by combining it with additional immunomodulatory medications. In this study, we studied the impact of vedolizumab monotreatment vs vedolizumab coadministration with other immunomodulatory drugs on intestinal inflammation and intestinal immune cells in vivo. METHODS: Colon tissue from human patients with UC with active disease or in remission with or without vedolizumab treatment was stained by immunohistochemistry. We reconstituted NOD-SCID-SGM3 mice with human CD34+ cells and treated them with dextran sodium sulfate to induce acute colitis. Mice were treated with vedolizumab alone, or in combination with tacrolimus, ozanimid, or tofacitinib. RESULTS: Vedolizumab reduced the number of CD3+ T cells and CD68+ monocytes/macrophages in the colon of patients with UC with active disease. Vedolizumab moderately decreased immune cell numbers in acute dextran sodium sulfate-induced colitis. The combination of vedolizumab with tacrolimus further reduced the number of infiltrating CD3+ T cells and CD68+ monocytes/macrophages and was superior in ameliorating intestinal inflammation when compared to vedolizumab monotreatment. In contrast, cotreatment using vedolizumab with ozanimod or tofacitinib had no additive effect. CONCLUSIONS: Our data show that vedolizumab reduces the number of innate and adaptive immune cells in the mucosa of patients with UC. Further, the combination of vedolizumab with tacrolimus was more efficient to reduce immune cell numbers and to increase therapeutic efficacy than vedolizumab monotreatment. This finding indicates that combination treatment using these two drugs may be beneficial for patients who do not respond to vedolizumab monotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Colite Ulcerativa , Fármacos Gastrointestinais , Tacrolimo , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Dextranos , Fármacos Gastrointestinais/uso terapêutico , Humanos , Agentes de Imunomodulação , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Tacrolimo/uso terapêutico , Resultado do Tratamento
14.
J Crohns Colitis ; 15(9): 1596-1601, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631789

RESUMO

BACKGROUND AND AIMS: Antibodies targeting tumor necrosis factor-alpha [TNF-alpha] are a mainstay in the treatment of inflammatory bowel disease. However, they fail to demonstrate efficacy in a considerable proportion of patients. On the other hand, glycosylation of antibodies might influence not only their immunogenicity but also their structure and function. We investigated whether specific glycosylation patterns of the Fc-fragment would affect the immunogenicity of anti-TNF-alpha antibody in monocyte-derived dendritic cells. METHODS: The effect of a specific Fc-glycosylation pattern on antibody uptake by monocyte-derived dendritic cells [mo-DCs] and how this process shapes the immunologic profile of mo-DCs was investigated. Three N-glycoforms of the anti-TNF-alpha antibody adalimumab, that differed in the content of fucose or sialic acid, were tested: [1] mock treated Humira, abbreviated 'Fuc-G0', where the N-glycan mainly consist of fucose and N-acetylglucosamine [GlcNAc], without sialic acid; [2] 'Fuc-G2S1/G2S2' with fucose and alpha 2,6 linked sialic acid; and [3] 'G2S1/G2S2' with alpha 2,6 linked sialic acid, without fucose. RESULTS: Our data demonstrated that neither fucosylation nor sialylation of anti-TNF-Abs [Fuc-G0, FucG2S1/G2S2, G2S1/G2S2] influence their uptake by mo-DCs. Additionally, none of the differentially glycosylated antibodies altered CD80, CD86, CD273, CD274 levels on mo-DCs stimulated in with lipopolysaccharide in the presence of antibodies. Next, we evaluated the levels of cytokines in the supernatant of mo-DCs stimulated with lipopolysaccharide in the presence of Fuc-G0, Fuc-G2S1/G2S2 or G2S1/G2S2-glycosylated anti-TNF antibodies. Only IL-2 and IL-17 levels were downregulated, and IL-5 production was upregulated by uptake of Fuc-G0 antibodies, as compared to control without antibodies. CONCLUSIONS: The specific modification in the Fc-glycosylation pattern of anti-TNF-alpha Abs does not affect their immunogenicity under the tested conditions. As this study was limited to mo-DCs, further investigation is required to clarify whether Ab uptake into mo-DCs might change the immunological profile of T- and B-cells, in order to ultimately reduce the formation of anti-drug antibodies and to improve the patient care.


Assuntos
Adalimumab/farmacologia , Células Dendríticas/efeitos dos fármacos , Fucose/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia , Adalimumab/química , Técnicas de Cultura de Células , Glicosilação , Humanos , Monócitos , Inibidores do Fator de Necrose Tumoral/química
15.
Mol Nutr Food Res ; 65(5): e1901269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780927

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation in the intestine. Given their role in regulation of inflammation, long-chain n-3 polyunsaturated fatty acids (PUFAs) represent a potential supplementary therapeutic approach to current drug regimens used for IBD. Mechanistically, there is ample evidence for an anti-inflammatory and pro-resolution effect of long-chain n-3 PUFAs after they incorporate into cell membrane phospholipids. They disrupt membrane rafts and when released from the membrane suppress inflammatory signaling by activating PPAR-γ and free fatty acid receptor 4; furthermore, they shift the lipid mediator profile from pro-inflammatory eicosanoids to specialized pro-resolving mediators. The allocation of long-chain n-3 PUFAs also leads to a higher microbiome diversity in the gut, increases short-chain fatty acid-producing bacteria, and improves intestinal barrier function by sealing epithelial tight junctions. In line with these mechanistic studies, most epidemiological studies support a beneficial effect of long-chain n-3 PUFAs intake on reducing the incidence of IBD. However, the results from intervention trials on the prevention of relapse in IBD patients show no or only a marginal effect of long-chain n-3 PUFAs supplementation. In light of the current literature, international recommendations are supported that adequate diet-derived n-3 PUFAs might be beneficial in maintaining remission in IBD patients.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Gastrite/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/dietoterapia , Animais , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais , Eicosanoides/farmacologia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/fisiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Gastrite/etiologia , Microbioma Gastrointestinal/fisiologia , Humanos
16.
Mol Nutr Food Res ; 65(5): e1901270, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32359213

RESUMO

Total parenteral nutrition (TPN) is a life-saving therapy administered to millions of patients. However, it is associated with significant adverse effects, namely liver injury, risk of infections, and metabolic derangements. In this review, the underlying causes of TPN-associated adverse effects, specifically gut atrophy, dysbiosis of the intestinal microbiome, leakage of the epithelial barrier with bacterial invasion, and inflammation are first described. The role of the bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor, of pleiotropic hormones, and growth factors is highlighted, and the mechanisms of insulin resistance, namely the lack of insulinotropic and insulinomimetic signaling of gut-originating incretins as well as the potentially toxicity of phytosterols and pro-inflammatory fatty acids mainly released from soybean oil-based lipid emulsions, are discussed. Finally, novel approaches in the design of next generation lipid delivery systems are proposed. Propositions include modifying the physicochemical properties of lipid emulsions, the use of lipid emulsions generated from sustainable oils with favorable ratios of anti-inflammatory n-3 to pro-inflammatory n-6 fatty acids, beneficial adjuncts to TPN, and concomitant pharmacotherapies to mitigate TPN-associated adverse effects.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gastrite/prevenção & controle , Hepatite/prevenção & controle , Lipídeos/administração & dosagem , Nutrição Parenteral Total/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Disbiose/etiologia , Emulsões/administração & dosagem , Emulsões/química , Gastrite/etiologia , Hepatite/etiologia , Humanos , Insulina/metabolismo , Lipídeos/farmacologia , Nutrição Parenteral Total/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo
18.
Mol Nutr Food Res ; 65(5): e2000412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32729969

RESUMO

SCOPE: The aim of this study is to test whether the choice of the lipid emulsion in total parenteral nutrition (TPN), that is, n-3 fatty acid-based Omegaven versus n-6 fatty acid-based Intralipid, determines inflammation in the liver, the incretin profile, and insulin resistance. METHODS AND RESULTS: Jugular vein catheters (JVC) are placed in C57BL/6 mice and used for TPN for 7 days. Mice are randomized into a saline group (saline infusion with oral chow), an Intralipid group (IL-TPN, no chow), an Omegaven group (OV-TPN, no chow), or a chow only group (without JVC). Both TPN elicite higher abundance of lipopolysaccharide binding protein in the liver, but only IL-TPN increases interleukin-6 and interferon-γ, while OV-TPN reduces interleukin-4, monocyte chemoattractant protein-1, and interleukin-1α. Insulin plasma concentrations are higher in both TPN, while glucagon and glucagon-like peptide-1 (GLP-1) were higher in IL-TPN. Gluconeogenesis is increased in IL-TPN and the nuclear profile of key metabolic transcription factors shows a liver-protective phenotype in OV-TPN. OV-TPN increases insulin sensitivity in the liver and skeletal muscle. CONCLUSION: OV-TPN as opposed to IL-TPN mitigates inflammation in the liver and reduces the negative metabolic effects of hyperinsulinemia and hyperglucagonemia by "re-sensitizing" the liver and skeletal muscle to insulin.


Assuntos
Gastrite/etiologia , Hepatite/etiologia , Insulina/metabolismo , Lipídeos/administração & dosagem , Nutrição Parenteral Total/métodos , Animais , Emulsões/administração & dosagem , Emulsões/química , Emulsões/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Óleos de Peixe/farmacologia , Incretinas/metabolismo , Insulina/sangue , Resistência à Insulina , Interferon gama/metabolismo , Interleucina-6/metabolismo , Lipídeos/química , Síndromes de Malabsorção/etiologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nutrição Parenteral Total/efeitos adversos , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , Óleo de Soja/administração & dosagem , Óleo de Soja/farmacologia , Triglicerídeos/farmacologia
19.
Front Immunol ; 11: 1856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973765

RESUMO

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) plays a pivotal role in immune homeostasis and has been associated with human autoimmune and chronic inflammatory diseases. Though PTPN2 is well-characterized in lymphocytes, little is known about its function in innate immune cells. Our findings demonstrate that dendritic cell (DC)-intrinsic PTPN2 might be the key to explain the central role for PTPN2 in the immune system to maintain immune tolerance. Partial genetic PTPN2 ablation in DCs resulted in spontaneous inflammation, particularly in skin, liver, lung and kidney 22 weeks post-birth. DC-specific PTPN2 controls steady-state immune cell composition and even incomplete PTPN2 deficiency in DCs resulted in enhanced organ infiltration of conventional type 2 DCs, accompanied by expansion of IFNγ-producing effector T-cells. Consequently, the phenotypic effects of DC-specific PTPN2 deficiency were abolished in T-cell deficient Rag knock-out mice. Our data add substantial knowledge about the molecular mechanisms to prevent inflammation and maintain tissue tolerance.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Cells ; 9(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102433

RESUMO

Disruption of epithelial junctional complex (EJC), especially tight junctions (TJ), resulting in increased intestinal permeability, is supposed to activate the enhanced immune response to gluten and to induce the development of celiac disease (CD). This study is aimed to present the role of EJC in CD pathogenesis. To analyze differentially expressed genes the next-generation mRNA sequencing data from CD326+ epithelial cells isolated from non-celiac and celiac patients were involved. Ultrastructural studies with morphometry of EJC were done in potential CD, newly recognized active CD, and non-celiac controls. The transcriptional analysis suggested disturbances of epithelium and the most significant gene ontology enriched terms in epithelial cells from CD patients related to the plasma membrane, extracellular exome, extracellular region, and extracellular space. Ultrastructural analyses showed significantly tighter TJ, anomalies in desmosomes, dilatations of intercellular space, and shorter microvilli in potential and active CD compared to controls. Enterocytes of fetal-like type and significantly wider adherence junctions were observed only in active CD. In conclusion, the results do not support the hypothesis that an increased passage of gluten peptides by unsealing TJ precedes CD development. However, increased intestinal permeability due to abnormality of epithelium might play a role in CD onset.


Assuntos
Doença Celíaca/fisiopatologia , Células Epiteliais/ultraestrutura , Junções Íntimas/ultraestrutura , Adolescente , Criança , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...