Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2992, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637229

RESUMO

Semiconducting graphene nanoribbons are promising materials for nanoelectronics but are held back by synthesis challenges. Here we report that molecular-scale carbon seeds can be exploited to initiate the chemical vapor deposition (CVD) synthesis of graphene to generate one-dimensional graphene nanoribbons narrower than 5 nm when coupled with growth phenomena that selectively extend seeds along a single direction. This concept is demonstrated by subliming graphene-like polycyclic aromatic hydrocarbon molecules onto a Ge(001) catalyst surface and then anisotropically evolving size-controlled nanoribbons from the seeds along [Formula: see text] of Ge(001) via CH4 CVD. Armchair nanoribbons with mean normalized standard deviation as small as 11% (3 times smaller than nanoribbons nucleated without seeds), aspect ratio as large as 30, and width as narrow as 2.6 nm (tunable via CH4 exposure time) are realized. Two populations of nanoribbons are compared in field-effect transistors (FETs), with off-current differing by 150 times because of the nanoribbons' different widths.


Assuntos
Doenças Cardiovasculares , Grafite , Nanotubos de Carbono , Catálise , Grafite/química , Humanos , Nanotubos de Carbono/química
2.
Nat Commun ; 11(1): 4151, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814775

RESUMO

Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales.

3.
J Phys Chem Lett ; 10(15): 4266-4272, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31287706

RESUMO

At widths below 10 nm, armchair graphene nanoribbons become semiconductors. One promising route to synthesize nanoribbons is chemical vapor deposition (CVD) of hydrocarbons on Ge(001), and synthesis from seeds reduces nanoribbon polydispersity. In this contribution, we advance the seed-initiated synthesis of nanoribbons and explore the impact of seed size and nanoribbon spacing on growth kinetics. Periodic arrays of graphene seeds are lithographically patterned and etched to reduce their diameter. The viability of initiating synthesis from sub-5 nm seeds is demonstrated, and the pitch between nanoribbons is reduced from 500 to 50 nm to show that crowding effects do not perturb nanoribbon growth kinetics. The invariance of kinetics with pitch in combination with density functional theory (DFT) calculations indicate that (1) the growth species for synthesis has a diffusion length of ≪50 nm and/or (2) the kinetics are strongly attachment-limited. These results demonstrate that seed-initiated synthesis on Ge(001) is a promising route for creating dense arrays of armchair graphene nanoribbons for semiconductor electronics applications.

4.
ACS Nano ; 12(8): 7855-7865, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29995380

RESUMO

Laminates made of graphene oxide nanosheets have been shown to exhibit high water permeance and salt rejection and, therefore, have generated immense interest from the scientific community due to their potential in separation applications. However, there is no clear consensus on the water-transport pathways through such laminates. In this study, we synthesized chemically identical graphene oxide nanosheets with 2 orders of magnitude difference in lateral sizes and measured water permeance through laminates of different thicknesses fabricated by pressure-assisted deposition of these nanosheets. Our results reveal that water permeance through these laminates is nearly the same despite such massive difference in lateral sheet size. Furthermore, we simulated fluid flow through laminates using an interconnected nanochannel network model for comparison with experiments. The simulations in combination with the experimental data show that it is unlikely that the dominant fluid transport pathway is a circuitous, lateral pathway around individual sheets, as has been proposed in some studies. Rather, nonideal factors including trans-sheet flow through pinhole defects in sheet interiors and/or flow-through regions arising from imperfect stacking in the laminates can significantly affect the fluid transport pathways. The presence of such nonidealities is also supported by thickness- and time-dependent measurements of permeance and by infrared spectroscopy, which indicates that water predominantly adopts a bulk-like structure in the laminates. These analyses are significant steps toward understanding water transport through graphene oxide laminates and provide further insight toward the structure of water inside these materials, which could have immense potential in next-generation separation applications.

5.
Nano Lett ; 18(2): 898-906, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29382200

RESUMO

It was recently discovered that the chemical vapor deposition (CVD) of CH4 on Ge(001) can directly yield long, narrow, semiconducting nanoribbons of graphene with smooth armchair edges. These nanoribbons have exceptional charge transport properties compared with nanoribbons grown by other methods. However, the nanoribbons nucleate at random locations and at random times, problematically giving rise to width and bandgap polydispersity, and the mechanisms that drive the anisotropic crystal growth that produces the nanoribbons are not understood. Here, we study and engineer the seed-initiated growth of graphene nanoribbons on Ge(001). The use of seeds decouples nucleation and growth, controls where growth occurs, and allows graphene to grow with lattice orientations that do not spontaneously form without seeds. We discover that when the armchair direction (i.e., parallel to C-C bonds) of the seeds is aligned with the Ge⟨110⟩ family of directions, the growth anisotropy is maximized, resulting in the formation of nanoribbons with high-aspect ratios. In contrast, increasing misorientation from Ge⟨110⟩ yields decreasingly anisotropic crystals. Measured growth rate data are used to generate a construction analogous to a kinetic Wulff plot that quantitatively predicts the shape of graphene crystals on Ge(001). This knowledge is employed to fabricate regularly spaced, unidirectional arrays of nanoribbons and to significantly improve their uniformity. These results show that seed-initiated graphene synthesis on Ge(001) will be a viable route for creating wafer-scale arrays of narrow, semiconducting, armchair nanoribbons with rationally controlled placement and alignment for a wide range of semiconductor electronics technologies, provided that dense arrays of sub-10 nm seeds can be uniformly fabricated in the future.

6.
Sci Adv ; 2(9): e1601240, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27617293

RESUMO

Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs µm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS µm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 µA µm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.


Assuntos
Nanotecnologia , Nanotubos de Carbono/química , Semicondutores , Silício/química , Arsenicais/química , Carbono/química , Gálio/química , Tamanho da Partícula , Propriedades de Superfície , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...