Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 8: 627730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141727

RESUMO

Autonomous navigation to a specified waypoint is traditionally accomplished with a layered stack of global path planning and local motion planning modules that generate feasible and obstacle-free trajectories. While these modules can be modified to meet task-specific constraints and user preferences, current modification procedures require substantial effort on the part of an expert roboticist with a great deal of technical training. In this paper, we simplify this process by inserting a Machine Learning module between the global path planning and local motion planning modules of an off-the shelf navigation stack. This model can be trained with human demonstrations of the preferred navigation behavior, using a training procedure based on Behavioral Cloning, allowing for an intuitive modification of the navigation policy by non-technical users to suit task-specific constraints. We find that our approach can successfully adapt a robot's navigation behavior to become more like that of a demonstrator. Moreover, for a fixed amount of demonstration data, we find that the proposed technique compares favorably to recent baselines with respect to both navigation success rate and trajectory similarity to the demonstrator.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5536-5539, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947108

RESUMO

Virtual reality (VR) offers the potential to study brain function in complex, ecologically realistic environments. However, the additional degrees of freedom make analysis more challenging, particularly with respect to evoked neural responses. In this paper we designed a target detection task in VR where we varied the visual angle of targets as subjects moved through a three dimensional maze. We investigated how the latency and shape of the classic P300 evoked response varied as a function of locking the electroencephalogram data to the target image onset, the target-saccade intersection, and the first fixation on the target. We found, as expected, a systematic shift in the timing of the evoked responses as a function of the type of response locking, as well as a difference in the shape of the waveforms. Interestingly, single-trial analysis showed that the peak discriminability of the evoked responses does not differ between image locked and saccade locked analysis, though it decreases significantly when fixation locked. These results suggest that there is a spread in the perception of visual information in VR environments across time and visual space. Our results point to the importance of considering how information may be perceived in naturalistic environments, specifically those that have more complexity and higher degrees of freedom than in traditional laboratory paradigms.


Assuntos
Eletroencefalografia , Realidade Virtual , Meio Ambiente , Potenciais Evocados Auditivos , Potenciais Evocados Visuais , Humanos , Movimentos Sacádicos
3.
J Neural Eng ; 15(6): 066031, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30279309

RESUMO

OBJECTIVE: Steady-state visual evoked potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP signals are acquired asynchronously, such approaches tend to fail. APPROACH: In this paper, we show how a compact convolutional neural network (Compact-CNN), which only requires raw EEG signals for automatic feature extraction, can be used to decode signals from a 12-class SSVEP dataset without the need for user-specific calibration. MAIN RESULTS: The Compact-CNN demonstrates across subject mean accuracy of approximately 80%, out-performing current state-of-the-art, hand-crafted approaches using canonical correlation analysis (CCA) and Combined-CCA. Furthermore, the Compact-CNN approach can reveal the underlying feature representation, revealing that the deep learner extracts additional phase- and amplitude-related features associated with the structure of the dataset. SIGNIFICANCE: We discuss how our Compact-CNN shows promise for BCI applications that allow users to freely gaze/attend to any stimulus at any time (e.g. asynchronous BCI) as well as provides a method for analyzing SSVEP signals in a way that might augment our understanding about the basic processing in the visual cortex.


Assuntos
Eletroencefalografia/classificação , Potenciais Evocados Visuais/fisiologia , Redes Neurais de Computação , Adulto , Algoritmos , Interfaces Cérebro-Computador , Voluntários Saudáveis , Humanos , Aprendizado de Máquina , Estimulação Luminosa , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Córtex Visual/fisiologia
4.
J Neural Eng ; 15(5): 056013, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29932424

RESUMO

OBJECTIVE: Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. APPROACH: In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). MAIN RESULTS: We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. SIGNIFICANCE: Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Redes Neurais de Computação , Adolescente , Adulto , Algoritmos , Potenciais Evocados P300/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Adulto Jovem
5.
IEEE Trans Neural Syst Rehabil Eng ; 25(6): 557-565, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27542113

RESUMO

Steady-state visual evoked potentials (SSVEPs) are oscillations of the electroencephalogram (EEG) which are mainly observed over the occipital area that exhibit a frequency corresponding to a repetitively flashing visual stimulus. SSVEPs have proven to be very consistent and reliable signals for rapid EEG-based brain-computer interface (BCI) control. There is conflicting evidence regarding whether solid or checkerboard-patterned flashing stimuli produce superior BCI performance. Furthermore, the spatial frequency of checkerboard stimuli can be varied for optimal performance. The present study performs an empirical evaluation of performance for a 4-class SSVEP-based BCI when the spatial frequency of the individual checkerboard stimuli is varied over a continuum ranging from a solid background to single-pixel checkerboard patterns. The results indicate that a spatial frequency of 2.4 cycles per degree can maximize the information transfer rate with a reduction in subjective visual irritation compared to lower spatial frequencies. This important finding on stimulus design can lead to improved performance and usability of SSVEP-based BCIs.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Adulto , Algoritmos , Feminino , Humanos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
6.
Front Neurosci ; 10: 430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713685

RESUMO

Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

7.
IEEE Trans Neural Syst Rehabil Eng ; 24(5): 532-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26812728

RESUMO

Many of the most widely accepted methods for reliable detection of steady-state visual evoked potentials (SSVEPs) in the electroencephalogram (EEG) utilize canonical correlation analysis (CCA). CCA uses pure sine and cosine reference templates with frequencies corresponding to the visual stimulation frequencies. These generic reference templates may not optimally reflect the natural SSVEP features obscured by the background EEG. This paper introduces a new approach that utilizes spatio-temporal feature extraction with multivariate linear regression (MLR) to learn discriminative SSVEP features for improving the detection accuracy. MLR is implemented on dimensionality-reduced EEG training data and a constructed label matrix to find optimally discriminative subspaces. Experimental results show that the proposed MLR method significantly outperforms CCA as well as several other competing methods for SSVEP detection, especially for time windows shorter than 1 second. This demonstrates that the MLR method is a promising new approach for achieving improved real-time performance of SSVEP-BCIs.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Simulação por Computador , Análise Discriminante , Humanos , Modelos Lineares , Aprendizado de Máquina , Masculino , Análise Multivariada , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
8.
J Neural Eng ; 12(3): 036006, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25875047

RESUMO

OBJECTIVE: Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. APPROACH: For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. MAIN RESULTS: Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. SIGNIFICANCE: The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais/fisiologia , Estimulação Luminosa/métodos , Análise e Desempenho de Tarefas , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...