Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38268517

RESUMO

Recent studies on the distribution of microplastics in aquatic sediments have deployed different methods and devices for density separation of microplastics from sediments. However, instrument specific limitations have been noted, including their high cost, difficulty in handling, or/and the potential for elevated contamination risk due to their plastic composition. This study improves existing sediment microplastic separation techniques by modifying the commonly used conical shape glass separating funnels. The modification consists in connecting a silicone tube at the base of the funnel, whose opening and closure was manually controlled by a Mohr clamp. This adjustment made to the funnels have effectively mitigated critical clogging problems frequently encountered in density separation units. An experiment was conducted using sand-based sediment spiked with polyamide fragments to validate this method modification. Following a complete extraction protocol with the modification of separating funnels, the microplastic extraction efficiency from sediments was high with a 90% recovery rate. Based on these promising results, future studies should consider naturally diverse substrates, as recovery efficiency may be sediment-dependent. Two key adjustments to the glass separation funnels:•Removal of stopcocks•Use of silicone tubes and Mohr clamps to control sediment release.

2.
Environ Sci Technol ; 57(8): 3042-3052, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790328

RESUMO

While microplastic transport, fate, and effects have been a focus of studies globally, the consequences of their presence on ecosystem functioning have not received the same attention. With increasing evidence of the accumulation of microplastics at sediment-water interfaces there is a need to assess their impacts on ecosystem engineers, also known as bioturbators, which have direct and indirect effects on ecosystem health. This study investigated the impact of microplastics on the bioturbator Tubifex tubifex alongside any effects on the biogeochemical processes at the sediment-water interface. Bioturbators were exposed to four sediment microplastic concentrations: 0, 700, 7000, and 70000 particles kg-1 sediment dry weight. Though no mortality was present, a significant response to oxidative stress was detected in tubificid worms after exposure to medium microplastic concentration (7000 particles kg-1 sediment dry weight). This was accompanied by a reduction in worm bioturbation activities assessed by their ability to rework sediment and to stimulate exchange water fluxes at the sediment-water interface. Consequently, the contributions of tubificid worms on organic matter mineralization and nutrient fluxes were significantly reduced in the presence of microplastics. This study demonstrated that environmentally realistic microplastic concentrations had an impact on biogeochemical processes at the sediment-water interface by reducing the bioturbation activities of tubificid worms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Água Doce , Água , Monitoramento Ambiental
3.
J Hazard Mater ; 430: 128356, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149499

RESUMO

Despite the increasing attention given to the impacts of nanoplastics in terrestrial environments, there is limited data about the effects on plants, and the quantitative information on uptake. In the present study, wheat plants grown in hydroponics were exposed to Pd-doped nanoplastics. This allowed us to quantify nanoplastics uptake and translocation to the shoots. Visualization of nanoplastics in roots was performed with synchrotron micro X-ray fluorescence (µXRF). Nanoplastics accumulated on the root epidermis, especially at the root tip and in root maturation zones. A close relationship between plant roots, rhizodeposits and nanoplastics behaviour was shown. Reinforcement of the cell wall in roots was evidenced using Fourier transform infrared spectroscopy (FTIR) and synchrotron-computed microtomography (µCT). Synchrotron-computed nanotomography (nanoCT) evidenced the presence of globular structures but they could not be identified as nanoplastics since they were observed both in the control and treated roots. By utilizing the inorganic tracer in the doped-nanoplastics, this study paves the road for elucidating interactions in more complex systems by using an integrative approach combining classical phytotoxicity markers with advanced nanometrology techniques.


Assuntos
Microplásticos , Plântula , Transporte Biológico , Hidroponia , Microplásticos/toxicidade , Raízes de Plantas/química , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...