Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Cell Int ; 18: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214377

RESUMO

BACKGROUND: Lung, breast, and colorectal malignancies are the leading cause of cancer-related deaths in the world causing over 2.8 million cancer-related deaths yearly. Despite efforts to improve prevention methods, early detection, and treatments, survival rates for advanced stage lung, breast, and colon cancer remain low, indicating a critical need to identify cancer-specific biomarkers for early detection and treatment. Thymidine kinase 1 (TK1) is a nucleotide salvage pathway enzyme involved in cellular proliferation and considered an important tumor proliferation biomarker in the serum. In this study, we further characterized TK1's potential as a tumor biomarker and immunotherapeutic target and clinical relevance. METHODS: We assessed TK1 surface localization by flow cytometry and confocal microscopy in lung (NCI-H460, A549), breast (MDA-MB-231, MCF7), and colorectal (HT-29, SW620) cancer cell lines. We also isolated cell surface proteins from HT-29 cells and performed a western blot confirming the presence of TK1 on cell membrane protein fractions. To evaluate TK1's clinical relevance, we compared TK1 expression levels in normal and malignant tissue through flow cytometry and immunohistochemistry. We also analyzed RNA-Seq data from The Cancer Genome Atlas (TCGA) to assess differential expression of the TK1 gene in lung, breast, and colorectal cancer patients. RESULTS: We found significant expression of TK1 on the surface of NCI-H460, A549, MDA-MB-231, MCF7, and HT-29 cell lines and a strong association between TK1's localization with the membrane through confocal microscopy and Western blot. We found negligible TK1 surface expression in normal healthy tissue and significantly higher TK1 expression in malignant tissues. Patient data from TCGA revealed that the TK1 gene expression is upregulated in cancer patients compared to normal healthy patients. CONCLUSIONS: Our results show that TK1 localizes on the surface of lung, breast, and colorectal cell lines and is upregulated in malignant tissues and patients compared to healthy tissues and patients. We conclude that TK1 is a potential clinical biomarker for the treatment of lung, breast, and colorectal cancer.

3.
Onco Targets Ther ; 10: 4355-4367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919785

RESUMO

TK1 is an enzyme involved in DNA synthesis and repair. TK1 is usually found elevated in cancer patients' serum, which makes it a useful tumor proliferation biomarker that strongly correlates with cancer stage, metastatic capabilities, and recurrence risk. In this study, we show that TK1 is upregulated and localizes on the plasma membrane of Burkitt's lymphoma, acute promyelocytic leukemia, T cell leukemia, and acute lymphoblastic leukemia (ALL). Using flow cytometry, we confirmed that TK1 localizes on the surface of Raji, HL60, and Jurkat cell lines and on ALL clinical samples. Using fluorescent microscopy, we found a strong association of TK1 with the plasma membrane in Raji, HL60, and Jurkat cell lines. These findings were also confirmed by scanning electron microscopy. Our study also shows that this phenomenon does not occur on normal resting or proliferating lymphocytes. In addition, we show that membrane TK1 is found in all oligomeric forms ranging from monomer to tetramer and exhibits enzymatic activity. These findings suggest TK1 as a possible target for immunotherapy with the potential to be utilized in the treatment of hematological cancers.

4.
Onco Targets Ther ; 10: 1921-1932, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408844

RESUMO

In both males and females, lung cancer is one of the most lethal cancers worldwide and accounts for >30% of cancer-related deaths. Despite advances in biomarker analysis and tumor characterization, there remains a need to find suitable biomarker antigen targets for treatment in late-stage lung cancer. Previous research on the salvage pathway enzyme TK1 shows a unique relationship with cancer patients as serum levels are raised according to cancer grade. To expand this analysis, the other salvage pathway enzymes were evaluated for possible upregulation within lung cancer. Adenine phosphoribosyltransferase, deoxycytidine kinase, and hypoxanthine guanine phosphoribosyltransferase (HPRT) were assessed for their presentation on two non-small-cell lung cancer cell lines NCI-H460 and A549. In the present study, we show that deoxycytidine kinase and adenine phosphoribosyltransferase have no significant relationship with the membrane of NCI-H460 cells. However, we found significant localization of HPRT to the membrane of NCI-H460 and A549 cells. When treated with anti-HPRT antibodies, the average fluorescence of the cell population increased by 24.3% and 12.9% in NCI-H460 and A549 cells, respectively, in comparison with controls. To ensure that expression was not attributed to cytoplasmic HPRT, confocal microscopy was performed to visualize HPRT binding on the plasma membrane. After staining NCI-H460 cells treated with both fluorescent antibodies and a membrane-specific dye, we observed direct overlap between HPRT and the membrane of the cancer cells. Additionally, gold-conjugated antibodies were used to label and quantify the amount of HPRT on the cell surface using scanning electron microscopy and energy-dispersive analysis X-ray. Further confirming HPRT presence, the gold weight percentage of the sample increased significantly when NCI-H460 cells were exposed to HPRT antibody (P=0.012) in comparison with isotype controls. Our results show that HPRT is localized on the surface of these non-small-cell lung cancer cell lines.

5.
Pharmacol Res Perspect ; 3(6): e00180, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27022462

RESUMO

Caffeine is the most widely used neurostimulant in the world. There is considerable debate on its effect on immune cells as it has been shown to antagonize adenosine receptors (ARs), which mediate an anti-inflammatory switch in activated immune cells. A second target is phosphodiesterase, where it acts as an inhibitor. If the primary effect of caffeine on mononuclear phagocytes were to antagonize ARs we would expect cells exposed to caffeine to have a prolonged proinflammatory response. The aim of this study was to investigate the effects and mechanism of action of caffeine in mononuclear phagocytes. Human mononuclear phagocytes were separated from whole blood and pretreated with protein kinase A inhibitor (PKA) and then exposed to micromolar physiological concentrations of caffeine. Phagocytosis and phagocytosis exhaustion were quantified using flow cytometry. Treatments were analyzed and compared to controls, using a beta regression controlling for factors of age, gender, caffeine intake, and exercise. We found that caffeine suppresses phagocytosis at micromolar physiological concentrations. This suppression was prevented when mononuclear phagocytes were pretreated with PKA inhibitor, suggesting that caffeine's phagocytic suppression may be due to its function as a phosphodiesterase inhibitor, pushing cells towards an anti-inflammatory response. Additionally, these effects are altered by regular caffeine intake and fitness level, emphasizing that tolerance and immune robustness are important factors in mononuclear phagocyte activation. These results demonstrate that caffeine may be acting as a phosphodiesterase inhibitor and suppressing phagocytosis in mononuclear phagocytes by promoting an anti-inflammatory response.

6.
Food Chem ; 158: 490-6, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24731374

RESUMO

Epidemiological studies show a positive correlation between oxidative stress and chronic disease development such as heart disease and cancer. While several antioxidant compounds with varying physical and chemical characteristics are able to reduce oxidative stress in biological systems, relatively few studies have been performed to examine the structural characteristics that produce potent antioxidants. We examined 20 essential and non-essential amino acids using the ORAC assay and used a simplest-case amino acid model to gather data to make predictions regarding the antioxidant activity of non-amino acid compounds; we also tested our findings on chalcone and nitrone data from the current literature. We observed that the sp(2)-hybridized carbons were the most consistent predictors of antioxidant activity in all groups. Valence electron to carbon ratio and length of conjugated double bond groups also emerged as important structural characteristics. Further testing may help to elucidate more accurate trends, as well as nonlinear relationships.


Assuntos
Aminoácidos/química , Antioxidantes/química , Técnicas de Química Analítica/métodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...