Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(1): 101486, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896394

RESUMO

Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and 13C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.


Assuntos
Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide , Acetiltransferases/metabolismo , Animais , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Virulência
2.
Annu Rev Microbiol ; 74: 521-543, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680453

RESUMO

Polysaccharides are dominant features of most bacterial surfaces and are displayed in different formats. Many bacteria produce abundant long-chain capsular polysaccharides, which can maintain a strong association and form a capsule structure enveloping the cell and/or take the form of exopolysaccharides that are mostly secreted into the immediate environment. These polymers afford the producing bacteria protection from a wide range of physical, chemical, and biological stresses, support biofilms, and play critical roles in interactions between bacteria and their immediate environments. Their biological and physical properties also drive a variety of industrial and biomedical applications. Despite the immense variation in capsular polysaccharide and exopolysaccharide structures, patterns are evident in strategies used for their assembly and export. This review describes recent advances in understanding those strategies, based on a wealth of biochemical investigations of select prototypes, supported by complementary insight from expanding structural biology initiatives. This provides a framework to identify and distinguish new systems emanating from genomic studies.


Assuntos
Bactérias/genética , Cápsulas Bacterianas/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Bactérias/química , Bactérias/metabolismo , Cápsulas Bacterianas/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Genômica , Polissacarídeos/biossíntese , Polissacarídeos Bacterianos/metabolismo
3.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31792013

RESUMO

Bacterial lipopolysaccharides are major components and contributors to the integrity of Gram-negative outer membranes. The more conserved lipid A-core part of this complex glycolipid is synthesized separately from the hypervariable O-antigenic polysaccharide (OPS) part, and they are joined in the periplasm prior to translocation to the outer membrane. Three different biosynthesis strategies are recognized for OPS biosynthesis, and one, the synthase-dependent pathway, is currently confined to a single example: the O:54 antigen from Salmonella enterica serovar Borreze. Synthases are complex enzymes that have the capacity to both polymerize and export bacterial polysaccharides. Although synthases like cellulose synthase are widespread, they typically polymerize a glycan without employing a lipid-linked intermediate, unlike the O:54 synthase (WbbF), which produces an undecaprenol diphosphate-linked product. This raises questions about the overall similarity between WbbF and conventional synthases. In this study, we examine the topology of WbbF, revealing four membrane-spanning helices, compared to the eight in cellulose synthase. Molecular modeling of the glycosyltransferase domain of WbbF indicates a similar architecture, and site-directed mutagenesis confirmed that residues important for catalysis and processivity in cellulose synthase are conserved in WbbF and required for its activity. These findings indicate that the glycosyltransferase mechanism of WbbF and classic synthases are likely conserved despite the use of a lipid acceptor for chain extension by WbbF.IMPORTANCE Glycosyltransferases play a critical role in the synthesis of a wide variety of bacterial polysaccharides. These include O-antigenic polysaccharides, which form the distal component of lipopolysaccharides and provide a protective barrier important for survival and host-pathogen interactions. Synthases are a subset of glycosyltransferases capable of coupled synthesis and export of glycans. Currently, the O:54 antigen of Salmonella enterica serovar Borreze involves the only example of an O-polysaccharide synthase, and its generation of a lipid-linked product differentiates it from classical synthases. Here, we explore features conserved in the O:54 enzyme and classical synthases to shed light on the structure and function of the unusual O:54 enzyme.


Assuntos
Domínio Catalítico , Glicosiltransferases/química , Modelos Moleculares , Salmonella enterica/enzimologia , Sequência de Aminoácidos , Catálise , Antígenos O/biossíntese , Proteínas Recombinantes de Fusão , Salmonella enterica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...