Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(22): 6001-6004, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219157

RESUMO

We demonstrate the rapid readout of terahertz orbital angular momentum (OAM) beams using an atomic-vapor-based imaging technique. OAM modes with both azimuthal and radial indices are created using phase-only transmission plates. The beams undergo terahertz-to-optical conversion in an atomic vapor, before being imaged in the far field using an optical CCD camera. In addition to the spatial intensity profile, we also observe the self-interferogram of the beams by imaging through a tilted lens, allowing the sign and magnitude of the azimuthal index to be read out directly. Using this technique, we can reliably read out the OAM mode of low-intensity beams with high fidelity in 10 ms. Such a demonstration is expected to have far-reaching consequences for proposed applications of terahertz OAM beams in communications and microscopy.

2.
Phys Rev Lett ; 127(6): 063604, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420315

RESUMO

We demonstrate a collectively encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent readout is performed by mapping the excitation into a single photon. Ramsey interferometry is used to probe the coherence of the qubit, as well as to test the robustness to external perturbations. We show that qubit coherence is preserved even as we lose atoms from the polariton mode, preserving Ramsey fringe visibility. We show that dephasing due to electric field noise scales as the fourth power of field amplitude. These results show that robust quantum information processing can be achieved via collective encoding using Rydberg polaritons, and hence this system could provide an attractive alternative coding strategy for quantum computation and networking.

3.
Opt Lett ; 45(20): 5888-5891, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057311

RESUMO

We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of 10×1×1µm3. The photon is subject to a Ramsey sequence, i.e., "split" into a superposition of two paths. After a delay of up to 450 ns, the two paths are recombined to give an output dependent on their relative phase. The superposition time of 450 ns is equivalent to a free-space propagation distance of 135 m. We show that the interferometer fringes are sensitive to external fields and suggest that stored-light interferometry could be useful for localized sensing applications.

4.
Opt Lett ; 40(23): 5570-3, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625053

RESUMO

We report on the observation of electromagnetically induced transparency (EIT) and absorption (EIA) of highly excited Rydberg states in thermal Cs vapor using a four-step excitation scheme. The advantage of this four-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to two- or three-step excitation schemes using two orders of magnitude less laser power. This scheme enables new applications such as dephasing free Rydberg excitation. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

5.
Opt Lett ; 37(18): 3858-60, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041883

RESUMO

We demonstrate electromagnetically induced transparency in a four-level cascade system where the upper level is a Rydberg state. The observed spectral features are sub-Doppler and can be enhanced due to the compensation of Doppler shifts with AC Stark shifts. A theoretical description of the system is developed that agrees well with the experimental results, and an expression for the optimum parameters is derived.

6.
Nano Lett ; 12(8): 4065-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22783831

RESUMO

Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 µK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.

7.
Opt Lett ; 37(1): 118-20, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22212810

RESUMO

We demonstrate polarization spectroscopy of an excited state transition in room-temperature cesium vapor. An anisotropy induced by a circularly polarized pump beam on the D2 transition is observed using a weak probe on the 6P(3/2)→7S(1/2) transition. At high pump power, a subfeature due to Autler-Townes splitting is observed that theoretical modeling shows is enhanced by Doppler averaging. Polarization spectroscopy provides a simple modulation-free signal suitable for laser frequency stabilization to excited state transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...