Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864635

RESUMO

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Aves Domésticas , Infecções Urinárias , Sequenciamento Completo do Genoma , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Humanos , Criança , Aves Domésticas/microbiologia , Adolescente , Pré-Escolar , Lactente , Masculino , Feminino , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/patogenicidade , Tipagem de Sequências Multilocus , Genoma Bacteriano
2.
One Health ; 16: 100518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363239

RESUMO

A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements - predominantly plasmids and bacteriophages - and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.

3.
BMC Microbiol ; 18(1): 174, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390618

RESUMO

BACKGROUND: We sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, "raised without antibiotics", and conventional. RESULTS: We collected all available brands of retail chicken and turkey-including conventional, "raised without antibiotic", and organic products-every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested-and multidrug resistance-among isolates from conventional turkey products when compared to those labelled organic or "raised without antibiotics". E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category. CONCLUSION: The high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to "raised without antibiotics" and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Alimentos Orgânicos/microbiologia , Aves Domésticas/microbiologia , Animais , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Contaminação de Alimentos , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana , Perus/microbiologia
4.
mBio ; 9(4)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154256

RESUMO

Escherichia coli sequence type 131 (ST131) has emerged rapidly to become the most prevalent extraintestinal pathogenic E. coli clones in circulation today. Previous investigations appeared to exonerate retail meat as a source of human exposure to ST131; however, these studies focused mainly on extensively multidrug-resistant ST131 strains, which typically carry allele 30 of the fimH type 1 fimbrial adhesin gene (ST131-H30). To estimate the frequency of extraintestinal human infections arising from foodborne ST131 strains without bias toward particular sublineages or phenotypes, we conducted a 1-year prospective study of E. coli from meat products and clinical cultures in Flagstaff, Arizona. We characterized all isolates by multilocus sequence typing, fimH typing, and core genome phylogenetic analyses, and we screened isolates for avian-associated ColV plasmids as an indication of poultry adaptation. E. coli was isolated from 79.8% of the 2,452 meat samples and 72.4% of the 1,735 culture-positive clinical samples. Twenty-seven meat isolates were ST131 and belonged almost exclusively (n = 25) to the ST131-H22 lineage. All but 1 of the 25 H22 meat isolates were from poultry products, and all but 2 carried poultry-associated ColV plasmids. Of the 1,188 contemporaneous human clinical E. coli isolates, 24 were ST131-H22, one-quarter of which occurred in the same high-resolution phylogenetic clades as the ST131-H22 meat isolates and carried ColV plasmids. Molecular clock analysis of an international ST131-H22 genome collection suggested that ColV plasmids have been acquired at least six times since the 1940s and that poultry-to-human transmission is not limited to the United States.IMPORTANCEE. coli ST131 is an important extraintestinal pathogen that can colonize the gastrointestinal tracts of humans and food animals. Here, we combined detection of accessory traits associated with avian adaptation (ColV plasmids) with high-resolution phylogenetics to quantify the portion of human infections caused by ST131 strains of food animal origin. Our results suggest that one ST131 sublineage-ST131-H22-has become established in poultry populations around the world and that meat may serve as a vehicle for human exposure and infection. ST131-H22 is just one of many E. coli lineages that may be transmitted from food animals to humans. Additional studies that combine detection of host-associated accessory elements with phylogenetics may allow us to quantify the total fraction of human extraintestinal infections attributable to food animal E. coli strains.


Assuntos
Infecções por Escherichia coli/microbiologia , Carne/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Adesinas de Escherichia coli/genética , Arizona , Proteínas de Fímbrias/genética , Humanos , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/análise , Estudos Prospectivos , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética
5.
Clin Infect Dis ; 61(6): 892-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206847

RESUMO

BACKGROUND: Klebsiella pneumoniae is a common colonizer of the gastrointestinal tract of humans, companion animals, and livestock. To better understand potential contributions of foodborne K. pneumoniae to human clinical infections, we compared K. pneumoniae isolates from retail meat products and human clinical specimens to assess their similarity based on antibiotic resistance, genetic relatedness, and virulence. METHODS: Klebsiella pneumoniae was isolated from retail meats from Flagstaff grocery stores in 2012 and from urine and blood specimens from Flagstaff Medical Center in 2011-2012. Isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Genetic relatedness of the isolates was assessed using multilocus sequence typing and phylogenetic analyses. Extraintestinal virulence of several closely related meat-source and urine isolates was assessed using a murine sepsis model. RESULTS: Meat-source isolates were significantly more likely to be multidrug resistant and resistant to tetracycline and gentamicin than clinical isolates. Four sequence types occurred among both meat-source and clinical isolates. Phylogenetic analyses confirmed close relationships among meat-source and clinical isolates. Isolates from both sources showed similar virulence in the mouse sepsis model. CONCLUSIONS: Meat-source K. pneumoniae isolates were more likely than clinical isolates to be antibiotic resistant, which could reflect selective pressures from antibiotic use in food-animal production. The close genetic relatedness of meat-source and clinical isolates, coupled with similarities in virulence, suggest that the barriers to transmission between these 2 sources are low. Taken together, our results suggest that retail meat is a potential vehicle for transmitting virulent, antibiotic-resistant K. pneumoniae from food animals to humans.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Carne/microbiologia , Infecções Urinárias/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Genoma Bacteriano , Genótipo , Humanos , Infecções por Klebsiella/epidemiologia , Camundongos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Sepse/epidemiologia , Sepse/microbiologia , Análise de Sequência de DNA , Infecções Urinárias/epidemiologia , Virulência , Adulto Jovem , Zoonoses/transmissão
6.
J AOAC Int ; 97(5): 1343-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25902984

RESUMO

The Atlas Listeria monocytogenes LmG2 Detection Assay, developed by Roka Bioscience Inc., was compared to a reference culture method for seven food types (hot dogs, cured ham, deli turkey, chicken salad, vanilla ice cream, frozen chocolate cream pie, and frozen cheese pizza) and one surface (stainless steel, grade 316). A 125 g portion of deli turkey was tested using a 1:4 food:media dilution ratio, and a 25 g portion for all other foods was tested using 1:9 food:media dilution ratio. The enrichment time and media for Roka's method was 24 to 28 h for 25 g food samples and environmental surfaces, and 44 to 48 h for 125 g at 35 ± 2°C in PALCAM broth containing 0.02 g/L nalidixic acid. Comparison of the Atlas Listeria monocytogenes LmG2 Detection Assay to the reference method required an unpaired approach. For each matrix, 20 samples inoculated at a fractional level and five samples inoculated at a high level with a different strain of Listeria monocytogenes were tested by each method. The Atlas Listeria monocytogenes LmG2 Detection Assay was compared to the Official Methods of Analysis of AOAC INTERNATIONAL 993.12 method for dairy products, the U.S. Department of Agriculture, Food Safety and Inspection Service, Microbiology Laboratory Guidebook 8.08 method for ready-to-eat meat and environmental samples, and the U.S. Food and Drug Administration Bacteriological Analytical Manual, Chapter 10 method for frozen foods. In the method developer studies, Roka's method, at 24 h (or 44 h for 125 g food samples), had 126 positives out of 200 total inoculated samples, compared to 102 positives for the reference methods at 48 h. In the independent laboratory studies, vanilla ice cream, deli turkey and stainless steel grade 316 were evaluated. Roka's method, at 24 h (or 44 h for 125 g food samples), had 64 positives out of 75 total inoculated samples compared to 54 positives for the reference methods at 48 h. The Atlas Listeria monocytogenes LmG2 Detection Assay detected all 50 L. monocytogenes strains that encompassed 13 serotypes across the various lineages and none of the 30 exclusive organisms, including seven other Listeria species. The product consistency and kit stability studies revealed no statistical differences between the three lots tested or to the term of the shelf life. Finally, the robustness study demonstrated no statistical differences when samples were incubated at 33 ± 2°C or 37 ± 2°C, when enrichment aliquots were 1.3 mL or 1.7 mL, or when the samples were analyzed the same day or five days later. Overall the Atlas Listeria monocytogenes LmG2 Detection Assay is statistically equivalent to or better than the reference methods and is robust to the tested variations.


Assuntos
Técnicas Bacteriológicas/métodos , Microbiologia de Alimentos , Listeria monocytogenes/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Kit de Reagentes para Diagnóstico , Listeria monocytogenes/genética , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...