Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroophthalmology ; 48(2): 122-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487358

RESUMO

Idiopathic intracranial hypertension (IIH) is a disease characterised by elevated intracranial pressure (ICP). The impact of straining and exercise on ICP regulation is poorly understood yet clinically relevant to IIH patient care. We sought to investigate the impact of Valsalva manoeuvres (VMs) and exercise on ICP and cerebrovascular haemodynamics in IIH. People with IIH were prospectively enrolled and had an intraparenchymal telemetric ICP sensor inserted. Three participants (age [mean ± standard deviation]: 40.3 ± 13.9 years) underwent continuous real-time ICP monitoring coupled with cerebrovascular haemodynamic assessments during VMs and moderate exercise. Participants had IIH with supine ICP measuring 15.3 ± 8.7 mmHg (20.8 ± 11.8 cm cerebrospinal fluid (CSF)) and sitting ICP measuring -4.2 ± 7.9 mmHg (-5.7 ± 10.7 cmCSF). During phase I of a VM ICP increased by 29.4 ± 13.5 mmHg (40.0 ± 18.4 cmCSF) but returned to baseline within 16 seconds from VM onset. The pattern of ICP changes during the VM phases was associated to that of changes in blood pressure, the middle cerebral artery blood velocity and prefrontal cortex haemodynamics. Exercise led to minimal effects on ICP. In conclusion, VM-induced changes in ICP were coupled to cerebrovascular haemodynamics and showed no sustained impact on ICP. Exercise did not lead to prolonged elevation of ICP. Those with IIH experiencing VMs (for example, during exercise and labour) may be reassured at the brief nature of the changes. Future research must look to corroborate the findings in a larger IIH cohort.

2.
Front Nutr ; 10: 1275708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024378

RESUMO

Introduction: Mental stress has been identified as a trigger of cardiovascular events. A single episode of stress can induce acute impairments in endothelial function in healthy adults. Importantly, during stressful periods, individuals often resort to unhealthy behaviors, such as increased consumption of high-fat foods, which is also known to negatively impact endothelial function. Therefore, this study examined whether consumption of a high-fat meal would further exacerbate the negative effect of mental stress on vascular function. Methods: In a randomized, counterbalanced, cross- over, postprandial intervention study, 21 healthy males and females ingested a high-fat (56.5 g fat) or a low-fat (11.4 g fat) meal 1.5 h before an 8-min mental stress task (Paced-Auditory-Serial-Addition-Task, PASAT). Plasma triglyceride (TAG) concentration was assessed pre-and post-meal. Forearm blood flow (FBF), blood pressure (BP), and cardiovascular activity were assessed pre-meal at rest and post-meal at rest and during stress. Endothelial function, measured by brachial flow-mediated dilatation (FMD) was assessed pre-meal and 30 and 90 min following mental stress. Results: Plasma TAG concentration was significantly increased following the high-fat meal compared to the low-fat condition. Mental stress induced similar increases in peripheral vasodilation, BP, and cardiovascular activity, and impaired FMD 30 min post-stress, in both conditions. FMD remained significantly impaired 90 min following stress in the high-fat condition only, suggesting that consumption of fat attenuates the recovery of endothelial function following mental stress. Discussion: Given the prevalence of fat consumption during stressful periods among young adults, these findings have important implications for dietary choices to protect the vasculature during periods of stress.

3.
Nutrients ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764753

RESUMO

Mental stress has been associated with cardiovascular events and stroke, and has also been linked with poorer brain function, likely due to its impact on cerebral vasculature. During periods of stress, individuals often increase their consumption of unhealthy foods, especially high-fat foods. Both high-fat intake and mental stress are known to impair endothelial function, yet few studies have investigated the effects of fat consumption on cerebrovascular outcomes during periods of mental stress. Therefore, this study examined whether a high-fat breakfast prior to a mental stress task would alter cortical oxygenation and carotid blood flow in young healthy adults. In a randomised, counterbalanced, cross-over, postprandial intervention study, 21 healthy males and females ingested a high-fat (56.5 g fat) or a low-fat (11.4 g fat) breakfast 1.5 h before an 8-min mental stress task. Common carotid artery (CCA) diameter and blood flow were assessed at pre-meal baseline, 1 h 15 min post-meal at rest, and 10, 30, and 90 min following stress. Pre-frontal cortex (PFC) tissue oxygenation (near-infrared spectroscopy, NIRS) and cardiovascular activity were assessed post-meal at rest and during stress. Mental stress increased heart rate, systolic and diastolic blood pressure, and PFC tissue oxygenation. Importantly, the high-fat breakfast reduced the stress-induced increase in PFC tissue oxygenation, despite no differences in cardiovascular responses between high- and low-fat meals. Fat and stress had no effect on resting CCA blood flow, whilst CCA diameter increased following consumption of both meals. This is the first study to show that fat consumption may impair PFC perfusion during episodes of stress in young healthy adults. Given the prevalence of consuming high-fat foods during stressful periods, these findings have important implications for future research to explore the relationship between food choices and cerebral haemodynamics during mental stress.


Assuntos
Encéfalo , Desjejum , Feminino , Masculino , Adulto , Humanos , Artéria Carótida Primitiva , Dieta com Restrição de Gorduras , Lobo Frontal
4.
J Physiol ; 601(22): 5093-5106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36855276

RESUMO

Small extracellular vesicles (sEVs) are released from all cell types and participate in the intercellular exchange of proteins, lipids, metabolites and nucleic acids. Proteomic, flow cytometry and nanoparticle tracking analyses suggest sEVs are released into circulation with exercise. However, interpretation of these data may be influenced by sources of bias introduced by different analytical approaches. Seven healthy participants carried out a high intensity intermittent training (HIIT) cycle protocol consisting of 4 × 30 s at a work-rate corresponding to 200% of individual max power (watts) interspersed by 4.5 min of active recovery. EDTA-treated blood was collected before and immediately after the final effort. Platelet-poor (PPP) and platelet-free (PFP) plasma was derived by one or two centrifugal spins at 2500 g, respectively (15 min, room temperature). Platelets were counted on an automated haemocytometer. Plasma samples were assessed with the Exoview R100 platform, which immobilises sEVs expressing common tetraspanin markers CD9, CD63, CD81 and CD41a on microfluidic chips and with the aid of fluorescence imaging, counts their abundance at a single sEV resolution, importantly, without a pre-isolation step. There was a lower number of platelets in the PFP than PPP, which was associated with a lower number of CD9, CD63 and CD41a positive sEVs. HIIT induced an increase in fluorescence counts in CD9, CD63 and CD81 positive sEVs in both PPP and PFP. These data support the concept that sEVs are released into circulation with exercise. Furthermore, platelet-free plasma is the preferred, representative analyte to study sEV dynamics and phenotype during exercise. KEY POINTS: Small extracellular vesicles (sEV) are nano-sized particles containing protein, metabolites, lipid and RNA that can be transferred from cell to cell. Previous findings implicate that sEVs are released into circulation with exhaustive, aerobic exercise, but since there is no gold standard method to isolate sEVs, these findings may be subject to bias introduced by different approaches. Here, we use a novel method to immobilise and image sEVs, at single-vesicle resolution, to show sEVs are released into circulation with high intensity intermittent exercise. Since platelet depletion of plasma results in a reduction in sEVs, platelet-free plasma is the preferred analyte to examine sEV dynamics and phenotype in the context of exercise.


Assuntos
Vesículas Extracelulares , Treinamento Intervalado de Alta Intensidade , Humanos , Proteômica , Exercício Físico , Voluntários Saudáveis
5.
Eur J Appl Physiol ; 122(12): 2493-2514, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149520

RESUMO

The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.


Assuntos
Endotélio Vascular , Precondicionamento Isquêmico , Humanos , Endotélio Vascular/fisiologia , Artéria Braquial/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica/fisiologia
6.
Front Physiol ; 13: 1035452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685202

RESUMO

Background and aims: Sex differences in the rate and occurrence of cerebrovascular diseases (e.g., stroke) indicate a role for female sex hormones (i.e., oestrogen and progesterone) in cerebrovascular function and regulation. However, it remains unclear how cerebrovascular function differs between the sexes, and between distinct phases of the menstrual cycle. This study aimed to compare cerebrovascular-CO2 responsiveness in 1) females during the early follicular (EF), ovulatory (O) and mid-luteal (ML) phases of their menstrual cycle; and 2) males compared to females during phases of lower oestrogen (EF) and higher oestrogen (O). Methods: Eleven females (25 ± 5 years) complete experimental sessions in the EF (n = 11), O (n = 9) and ML (n = 11) phases of the menstrual cycle. Nine males (22 ± 3 years) completed two experimental sessions, approximately 2 weeks apart for comparison to females. Middle and posterior cerebral artery velocity (MCAv, PCAv) was measured at rest, during two stages of hypercapnia (2% and 5% CO2 inhalation) and hypocapnia (voluntary hyperventilation to an end-tidal CO2 of 30 and 24 mmHg). The linear slope of the cerebral blood velocity response to changes in end-tidal CO2 was calculated to measure cerebrovascular-CO2 responsiveness.. Results: In females, MCAv-CO2 responsiveness to hypocapnia was lower during EF (-.78 ± .45 cm/s/mmHg) when compared to the O phase (-1.17 ± .52 cm/s/mmHg; p < .05) and the ML phase (-1.30 ± .82; p < .05). MCAv-CO2 responsiveness to hypercapnia and hypo-to-hypercapnia, and PCAv-CO2 responsiveness across the CO2 range were similar between menstrual phases (p ≥ .20). MCAv-CO2 responsiveness to hypo-to hypercapnia was greater in females compared to males (3.12 ± .91 cm/s/mmHg vs. 2.31 ± .46 cm/s/mmHg; p = .03), irrespective of menstrual phase (EF or O). Conclusion: Females during O and ML phases have an enhanced vasoconstrictive capacity of the MCA compared to the EF phase. Additionally, biological sex differences can influence cerebrovascular-CO2 responsiveness, dependent on the insonated vessel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...