Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38832139

RESUMO

Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.

2.
Environ Sci Pollut Res Int ; 29(30): 45261-45275, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35143002

RESUMO

Agrochemicals including neonicotinoid insecticides and fungicides are frequently applied as seed treatments on corn, soybeans, and other common row crops. Crops grown from pesticide-treated seed are often directly planted in managed floodplain wetlands and used as a soil disturbance or food resource for wildlife. We quantified invertebrate communities within mid-latitude floodplain wetlands and assessed their response to use of pesticide-treated seeds within the floodplain. We collected and tested aqueous and sediment samples for pesticides in addition to sampling aquatic invertebrates from 22 paired wetlands. Samples were collected twice in 2016 (spring [pre-water level drawdown] and autumn [post-water level flood-up]) followed by a third sampling period (spring 2017). Meanwhile, during the summer of 2016, a portion of study wetlands were planted with either pesticide-treated or untreated corn seed. Neonicotinoid toxic equivalencies (NI-EQs) for sediment (X̅ = 0.58 µg/kg), water (X̅ = 0.02 µg/L), and sediment fungicide concentrations (X̅ = 0.10 µg/kg) were used to assess potential effects on wetland invertebrates. An overall decrease in aquatic insect richness and abundance was associated with greater NI-EQs in wetland water and sediments, as well as with sediment fungicide concentration. Post-treatment, treated wetlands displayed a decrease in insect taxa-richness and abundance before recovering by the spring of 2017. Information on timing and magnitude of aquatic insect declines will be useful when considering the use of seed treatments for wildlife management. More broadly, this study brings attention to how agriculture is used in wetland management and conservation planning.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Fungicidas Industriais/análise , Insetos , Inseticidas/análise , Invertebrados , Neonicotinoides/análise , Praguicidas/farmacologia , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
3.
Mov Ecol ; 10(1): 1, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986903

RESUMO

BACKGROUND: The timing of autumn migration in ducks is influenced by a range of environmental conditions that may elicit individual experiences and responses from individual birds, yet most studies have investigated relationships at the population level. We used data from individual satellite-tracked mallards (Anas platyrhynchos) to model the timing and environmental drivers of autumn migration movements at a continental scale. METHODS: We combined two sets of location records (2004-2007 and 2010-2011) from satellite-tracked mallards during autumn migration in the Mississippi Flyway, and identified records that indicated the start of long-range (≥ 30 km) southward movements during the migration period. We modeled selection of departure date by individual mallards using a discrete choice model accounting for heterogeneity in individual preferences. We developed candidate models to predict the departure date, conditional on daily mean environmental covariates (i.e. temperature, snow and ice cover, wind conditions, precipitation, cloud cover, and pressure) at a 32 × 32 km resolution. We ranked model performance with the Bayesian Information Criterion. RESULTS: Departure was best predicted (60% accuracy) by a "winter conditions" model containing temperature, and depth and duration of snow cover. Models conditional on wind speed, precipitation, pressure variation, and cloud cover received lower support. Number of days of snow cover, recently experienced snow cover (snow days) and current snow cover had the strongest positive effect on departure likelihood, followed by number of experienced days of freezing temperature (frost days) and current low temperature. Distributions of dominant drivers and of correct vs incorrect prediction along the movement tracks indicate that these responses applied throughout the latitudinal range of migration. Among recorded departures, most were driven by snow days (65%) followed by current temperature (30%). CONCLUSIONS: Our results indicate that among the tested environmental parameters, the dominant environmental driver of departure decision in autumn-migrating mallards was the onset of snow conditions, and secondarily the onset of temperatures close to, or below, the freezing point. Mallards are likely to relocate southwards quickly when faced with snowy conditions, and could use declining temperatures as a more graduated early cue for departure. Our findings provide further insights into the functional response of mallards to weather factors during the migration period that ultimately determine seasonal distributions.

4.
Sci Total Environ ; 786: 147299, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971605

RESUMO

Wild bees support global agroecosystems via pollination of agricultural crops and maintaining diverse plant communities. However, with an increased reliance on pesticides to enhance crop production, wild bee communities may inadvertently be affected through exposure to chemical residues. Laboratory and semi-field studies have demonstrated lethal and sublethal effects of neonicotinoids on limited genera (e.g., Apis, Bombus, Megachile), yet full field studies evaluating impacts to wild bee communities remain limited. Here, we conducted a two-year field study to assess whether neonicotinoid seed treatment and presence in environmental media (e.g., soil, flowers) influenced bee nest and diet guild abundance and richness. In 2017 and 2018, we planted 23 Missouri agricultural fields to soybeans (Glycine max) using one of three seed treatments: untreated (no insecticide), treated (imidacloprid), or previously-treated (untreated, but neonicotinoid use prior to 2017). During both years, wild bees were collected in study field margins monthly (May to September) in tandem with soil and flowers from fields and field margins that were analyzed for neonicotinoid residues. Insecticide presence in soils and flowers varied over the study with neonicotinoids infrequently detected in both years within margin flowers (0%), soybean flowers (<1%), margin soils (<8%), and field soils (~39%). Wild bee abundance and species richness were not significantly different among field treatments. In contrast, neonicotinoid presence in field soils was associated with significantly lower richness (ground- and aboveground-nesting, diet generalists) of wild bee guilds. Our findings support that soil remains an underexplored route of exposure and long-term persistence of neonicotinoids in field soils may lead to reduced diversity in regional bee communities. Future reduction or elimination of neonicotinoid seed treatment use on areas managed for wildlife may facilitate conservation goals to sustain viable, diverse wild bee populations.


Assuntos
Inseticidas , Polinização , Animais , Abelhas , Inseticidas/análise , Inseticidas/toxicidade , Missouri , Neonicotinoides/toxicidade , Sementes/química
5.
J Environ Qual ; 50(1): 241-251, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169408

RESUMO

Neonicotinoid pesticides can persist in soils for extended time periods; however, they also have a high potential to contaminate ground and surface waters. Studies have reported negative effects associated with neonicotinoids and nontarget taxa, including aquatic invertebrates, pollinating insect species, and insectivorous birds. This study evaluated factors associated with clothianidin (CTN) degradation and sorption in Missouri wetland soils to assess the potential for wetland soils to mitigate potential environmental risks associated with neonicotinoids. Solid-to-solution partition coefficients (Kd ) for CTN sorption to eight wetland soils were determined via single-point sorption experiments, and sorption isotherm experiments were conducted using the two most contrasting soils. Clothianidin degradation was determined under oxic and anoxic conditions over 60 d. Degradation data were fit to zero- and first-order kinetic decay models to determine CTN half-life (t0.5 ). Sorption results indicated CTN sorption to wetland soil was relatively weak (average Kd , 3.58 L kg-1 ); thus, CTN has the potential to be mobile and bioavailable within wetland soils. However, incubation results showed anoxic conditions significantly increased CTN degradation rates in wetland soils (anoxic average t0.5 , 27.2 d; oxic average t0.5 , 149.1 d). A significant negative correlation was observed between anoxic half-life values and soil organic C content (r2  = .782; p = .046). Greater CTN degradation rates in wetland soils under anoxic conditions suggest that managing wetlands to facilitate anoxic conditions could mitigate CTN presence in the environment and reduce exposure to nontarget organisms.


Assuntos
Poluentes do Solo , Solo , Adsorção , Guanidinas , Missouri , Neonicotinoides , Tiazóis , Áreas Alagadas
6.
J Environ Manage ; 277: 111438, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027735

RESUMO

Wildlife and human health are at risk of lead exposure from spent hunting ammunition. Lead exposure persists for bald eagles due to bullet fragments in game animal gut piles and unretrieved carcasses, and is also a human health risk when wild game is procured using lead ammunition. Programs encouraging the voluntary use of nonlead ammunition have become a popular approach mitigating these effects. This study explored attitudes and experiences of United States Fish and Wildlife Service (USFWS) staff implementing an outreach program encouraging deer hunters to voluntary use nonlead ammunition on 54 National Wildlife Refuges (NWRs) in the Upper Midwest, U.S. to understand factors affecting program implementation. We conducted 29 semi-structured interviews of USFWS staff along with 60 responses from an open-ended survey question. Twelve themes emerged from the data and were grouped into three broad categories: (1) challenges of dealing with complex issues, (2) importance of messengers and messages, and (3) resistance from staff. Challenges of dealing with complex issues included administrative restraint and uncertainty, scope and scale of program, human health not an agency responsibility, contextual political influences, and public-private collaborations. Importance of messengers and messages included the importance of experience, and salience of human health risk. Finally, resistance from staff included skepticism of the science and motives behind the program, competing priorities for refuge staff, differing perceptions of regulatory and voluntary approaches, cost and availability of nonlead ammunition, and disregard by some about lead ammunition and human health risks. Staff identified numerous challenges implementing the program, many of which were external factors beyond the control of the participants. Understanding the factors affecting program implementation may help guide future efforts encouraging the voluntary use of nonlead ammunition.


Assuntos
Cervos , Águias , Esportes , Animais , Animais Selvagens , Humanos , Estados Unidos
7.
Sci Total Environ ; 742: 140436, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623160

RESUMO

Pesticide exposure is a growing global concern for pollinator conservation. While most current pesticide studies have specifically focused on the impacts of neonicotinoid insecticides toward honeybees and some native bee species, wild pollinators may be exposed to a broader range of agrochemicals. In 2016 and 2017 we collected a total of 637 wild bees and butterflies from the margins of cultivated agricultural fields situated on five Conservation Areas in mid-northern Missouri. Pollinators were composited by individual genera (90 samples) and whole tissues were then analyzed for the presence of 168 pesticides and degradation products. At least one pesticide was detected (% frequency) in the following wild bee genera: Bombus (96%), Eucera (75%), Melissodes (73%), Ptilothrix (50%), Xylocopa (50%), and Megachile (17%). Similarly, at least one pesticide was detected in the following lepidopteran genera: Hemaris (100%), Hylephila (75%), Danaus (60%), and Colias (50%). Active ingredients detected in >2% of overall pollinator samples were as follows: metolachlor (24%), tebuconazole (22%), atrazine (18%), imidacloprid desnitro (13%), bifenthrin (9%), flumetralin (9%), p, p'-DDD (6%), tebupirimfos (4%), fludioxonil (4%), flutriafol (3%), cyproconazole (2%), and oxadiazon (2%). Concentrations of individual pesticides ranged from 2 to 174 ng/g. Results of this pilot field study indicate that wild pollinators are exposed to and are potentially bioaccumulating a wide variety of pesticides in addition to neonicotinoids. Here, we provide evidence that wild bee and butterfly genera may face exposure to a wide range of insecticides, fungicides, and herbicides despite being collected from areas managed for conservation. Therefore, even with the presence of extensive habitat, minimal agricultural activity on Conservation Areas may expose pollinators to a range of pesticides.


Assuntos
Fungicidas Industriais/análise , Inseticidas/análise , Praguicidas/análise , Animais , Abelhas , Missouri , Neonicotinoides , Nitrocompostos
8.
Bull Environ Contam Toxicol ; 103(5): 717-722, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31492972

RESUMO

Neonicotinoid insecticides are highly water soluble with relatively long half-lives, which allows them to move into and persist in aquatic ecosystems. However, little is known of the impacts of neonicotinoids on non-target vertebrates, especially at sublethal concentrations. We evaluated the effects of the neonicotinoid clothianidin on the behavior of southern leopard frog tadpoles (Rana sphenocephala) after a 96-h exposure at 6 concentrations, including 0 (control), 0.375, 0.75, 1.5, 3.0, 6.0 µg/L. We quantified total displacement, mean velocity, maximum velocity, and time spent moving of tadpoles for 1 h post-exposure. Total displacement and mean velocity of tadpoles decreased with clothianidin exposure. Maximum velocity decreased linearly with concentration, but there was no relationship between time spent moving and clothianidin concentration. Our results suggest exposure to clothianidin at sublethal concentrations can affect movement behavior of non-target organisms such as tadpoles.


Assuntos
Guanidinas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ecossistema , Guanidinas/análise , Inseticidas/análise , Neonicotinoides/análise , Rana pipiens , Tiazóis/análise , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 53(18): 10591-10600, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31412695

RESUMO

Widespread use of neonicotinoid insecticides in North America has led to frequent detection of neonicotinoids in surface waters. Despite frequent surface water detection, few studies have evaluated underlying sediments for the presence of neonicotinoids. Thus, we sampled water and sediments for neonicotinoids during a one-year period at 40 floodplain wetlands throughout Missouri. Analyzed for six common neonicotinoids, sediment samples consistently (63% of samples) contained neonicotinoids (e.g., imidacloprid and clothianidin) in all sampling periods. Mean sediment and aqueous neonicotinoid concentrations were 1.19 µg kg-1 (range: 0-17.99 µg kg-1) and 0.03 µg L-1 (0-0.97 µg L-1), respectively. We used boosted regression tree analysis to explain sediment neonicotinoid concentrations and ultimately identified six variables that accounted for 31.6% of concentration variability. Efforts to limit sediment neonicotinoid contamination could include reducing agriculture within a wetland below a threshold of 25% area planted. Also, prolonging periods of overlying water >25 cm deep when water temperatures reach/exceed 18 °C could promote conditions favorable for neonicotinoid degradation. Results of this study can be useful in determining potential routes and levels of neonicotinoid exposure experienced by nontarget benthic aquatic invertebrates as well as potential means to mitigate neonicotinoid concentrations in floodplain wetlands.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Missouri , Neonicotinoides , Nitrocompostos , América do Norte , Áreas Alagadas
10.
Ecol Evol ; 9(9): 5324-5337, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110682

RESUMO

Wildfires are increasing in incidence and severity across coniferous forests of the western United States, leading to changes in forest structure and wildlife habitats. Knowledge of how species respond to fire-driven habitat changes in these landscapes is limited and generally disconnected from our understanding of adaptations that underpin responses to fire.We aimed to investigate drivers of occupancy of a diverse bat community in a fire-altered landscape, while identifying functional traits that underpinned these relationships.We recorded bats acoustically at 83 sites (n = 249 recording nights) across the Plumas National Forest in the northern Sierra Nevada over 3 summers (2015-2017). We investigated relationships between fire regime, physiographic variables, forest structure and probability of bat occupancy for nine frequently detected species. We used fourth-corner regression and RLQ analysis to identify ecomorphological traits driving species-environment relationships across 17 bat species. Traits included body mass; call frequency, bandwidth, and duration; and foraging strategy based on vegetation structure (open, edge, or clutter).Relationships between bat traits and fire regime were underpinned by adaptations to diverse forest structure. Bats with traits adapting them to foraging in open habitats, including emitting longer duration and narrow bandwidth calls, were associated with higher severity and more frequent fires, whereas bats with traits consistent with clutter tolerance were negatively associated with fire frequency and burn severity. Relationships between edge-adapted bat species and fire were variable and may be influenced by prey preference or habitat configuration at a landscape scale.Predicted increases in fire frequency and severity in western US coniferous forests are likely to shift dominance in the bat community to open-adapted species and those able to exploit postfire resource pulses (aquatic insects, beetles, and snags). Managing for pyrodiversity within the western United States is likely important for maintaining bat community diversity, as well as diversity of other biotic communities.

11.
PLoS One ; 13(8): e0203077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30142189

RESUMO

Expanding populations of North American midcontinent lesser snow geese (Anser caerulescens caerulescens) have potential to alter ecosystems throughout the Arctic and subarctic where they breed. Efforts to understand origins of harvested lesser snow geese to better inform management decisions have traditionally required mark-recapture approaches, while aerial photographic surveys have typically been used to identify breeding distributions. As a potential alternative, isotopic patterns that are metabolically fixed within newly grown flight feathers following summer molting could provide inferences regarding geographic breeding origin of individuals, without the need for prior capture. Our objective was to assess potential to use four stable isotopes (δ13C, δ15N, δ34S, δ2H) from feather material to determine breeding origins. We obtained newly grown flight feathers from individuals during summer banding at three Arctic and two subarctic breeding colonies in 2014 (n = 56) and 2016 (n = 45). We used linear discriminant analyses to predict breeding origins from models using combinations of stable isotopes as predictors and evaluated model accuracy when predicting colony, subregion, or subpopulation levels. We found a strong inverse relationship between δ2H values and increasing latitude (R2 = 0.83), resulting in differences (F4, 51 = 90.41, P < 0.0001) among sampled colonies. No differences in δ13C or δ15N were detected among colonies, although δ34S in Akimiski Island, Baffin Island, and Karrak Lake were more enriched (F4, 51 = 11.25, P < 0.0001). Using δ2H values as a predictor, discriminant analyses improved accuracy in classification level as precision decreased [model accuracy = 67% (colony), 88% (subregion), 94% (subpopulation)]. Application of the isotopic methods we describe could be used to provide an alternative monitoring method of population metrics, such as overall breeding population distribution, region-specific productivity and migratory connectivity that are informative to management decision makers and provide insight into cross-seasonal effects that may influence migratory behavior.


Assuntos
Migração Animal , Plumas , Gansos , Isótopos , Animais , Animais Selvagens , Regiões Árticas , Canadá , Análise Discriminante , Plumas/metabolismo , Feminino , Gansos/metabolismo , Isótopos/metabolismo , Estudo de Prova de Conceito , Reprodução , Estações do Ano , Estados Unidos
12.
Ecol Appl ; 28(5): 1232-1244, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603486

RESUMO

Neonicotinoid insecticides are currently the fastest-growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non-target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta-analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.


Assuntos
Artrópodes/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Animais , Artrópodes/fisiologia , Polinização
13.
Pest Manag Sci ; 73(12): 2592-2603, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28837262

RESUMO

BACKGROUND: Migratory waterfowl have often been implicated in the movement of troublesome agronomic and wetland weed species. However, minimal research has been conducted to investigate the dispersal of agronomically important weed species by waterfowl. The two objectives for this project were to determine what weed species are being consumed by ducks and snow geese, and to determine the recovery rate and viability of 13 agronomic weed species after passage through a duck's digestive system. RESULTS: Seed recovered from digestive tracts of 526 ducks and geese harvested during a 2-year field study had 35 020 plants emerge. A greater variety of plant species emerged from ducks each year (47 and 31 species) compared to geese (11 and 3 species). Viable seed from 11 of 13 weed species fed to ducks in a controlled feeding study were recovered. Viability rate and gut retention times indicated potential dispersal up to 2900 km from the source depending on seed characteristics and variability in waterfowl dispersal distances. CONCLUSIONS: Study results confirm that waterfowl are consuming seeds from a variety of agronomically important weed species, including Palmer amaranth, which can remain viable after passage through digestive tracts and have potential to be dispersed over long distances by waterfowl. © 2017 Society of Chemical Industry.


Assuntos
Anseriformes/fisiologia , Dispersão de Sementes , Sementes/fisiologia , Animais , Comportamento Alimentar , Áreas Alagadas
14.
Physiol Behav ; 174: 144-154, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259805

RESUMO

Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Simbiose/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Raios Ultravioleta , Percepção Visual/efeitos da radiação
15.
PLoS One ; 8(10): e75673, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130732

RESUMO

The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted conservation plans can be developed to support planning for habitat management and evaluation of long-term climate effects.


Assuntos
Migração Animal/fisiologia , Modelos Teóricos , Animais , Patos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...