Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895427

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing ß cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

2.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889047

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing beta cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

3.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745208

RESUMO

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Biomarcadores Tumorais/genética , Proteogenômica/métodos , Mutação , Microdissecção e Captura a Laser , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Proteômica/métodos , Prognóstico
4.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565538

RESUMO

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Assuntos
Multiômica , Viroses , Vírus , Animais , Humanos , Camundongos , Perfilação da Expressão Gênica/métodos , Metabolômica , Proteômica/métodos , Viroses/imunologia , Interações Hospedeiro-Patógeno
5.
PLoS One ; 19(3): e0293856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551935

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Microscopia , Axônios , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem
6.
iScience ; 27(2): 108769, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303689

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

7.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
8.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405796

RESUMO

Background: Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk. Methods: Twelve candidate biomarkers, which were identified in the augmented data and selected based on their fold-change relative to healthy controls and cross-reference to proteomics data previously obtained in the expansive TEDDY and DAISY cohorts, were measured in the original samples by ELISA. Results: All 12 biomarkers had established connections with lipid/lipoprotein metabolism, immune function, inflammation, and diabetes, but only 7 were found to be markedly changed in the high-risk subjects compared to the healthy controls: ApoC1 and PON1 were reduced while CETP, CD36, FGFR1, IGHM, PCSK9, SOD1, and VCAM1 were elevated. Conclusions: Results further highlight the promise of our data augmentation approach in unmasking important patterns and pathologically significant features in parallel multi-omics datasets obtained from small sample cohorts to facilitate the identification of promising candidate T1D biomarkers for downstream validation. They also support the potential utility of a composite biomarker signature of T1D risk characterized by the changes in the above markers.

9.
Nat Chem Biol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302607

RESUMO

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

10.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649398

RESUMO

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Pâncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
11.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076918

RESUMO

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in ß cells and to understand why this protection fails to occur naturally. Methods: GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results: The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces ß cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation: GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic ß cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.

12.
J Proteome Res ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085827

RESUMO

PMart is a web-based tool for reproducible quality control, exploratory data analysis, statistical analysis, and interactive visualization of 'omics data, based on the functionality of the pmartR R package. The newly improved user interface supports more 'omics data types, additional statistical capabilities, and enhanced options for creating downloadable graphics. PMart supports the analysis of label-free and isobaric-labeled (e.g., TMT, iTRAQ) proteomics, nuclear magnetic resonance (NMR) and mass-spectrometry (MS)-based metabolomics, MS-based lipidomics, and ribonucleic acid sequencing (RNA-seq) transcriptomics data. At the end of a PMart session, a report is available that summarizes the processing steps performed and includes the pmartR R package functions used to execute the data processing. In addition, built-in safeguards in the backend code prevent users from utilizing methods that are inappropriate based on omics data type. PMart is a user-friendly interface for conducting exploratory data analysis and statistical comparisons of omics data without programming.

13.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961439

RESUMO

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By fine-tuning the final two layers of the neural network at a lower learning rate of the TrailMap model, we demonstrate an improved recall and an occasionally improved adjusted F1-score within our test dataset over using the originally trained TrailMap model.

14.
Cell Rep Med ; 4(11): 101261, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918404

RESUMO

In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing ß cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with ß cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during ß cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve ß cell function in T1D through islet cell-autonomous effects.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Putrescina/metabolismo
15.
Metabolites ; 13(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887426

RESUMO

Metabolomics provides a unique snapshot into the world of small molecules and the complex biological processes that govern the human, animal, plant, and environmental ecosystems encapsulated by the One Health modeling framework. However, this "molecular snapshot" is only as informative as the number of metabolites confidently identified within it. The spectral similarity (SS) score is traditionally used to identify compound(s) in mass spectrometry approaches to metabolomics, where spectra are matched to reference libraries of candidate spectra. Unfortunately, there is little consensus on which of the dozens of available SS metrics should be used. This lack of standard SS score creates analytic uncertainty and potentially leads to issues in reproducibility, especially as these data are integrated across other domains. In this work, we use metabolomic spectral similarity as a case study to showcase the challenges in consistency within just one piece of the One Health framework that must be addressed to enable data science approaches for One Health problems. Here, using a large cohort of datasets comprising both standard and complex datasets with expert-verified truth annotations, we evaluated the effectiveness of 66 similarity metrics to delineate between correct matches (true positives) and incorrect matches (true negatives). We additionally characterize the families of these metrics to make informed recommendations for their use. Our results indicate that specific families of metrics (the Inner Product, Correlative, and Intersection families of scores) tend to perform better than others, with no single similarity metric performing optimally for all queried spectra. This work and its findings provide an empirically-based resource for researchers to use in their selection of similarity metrics for GC-MS identification, increasing scientific reproducibility through taking steps towards standardizing identification workflows.

16.
Metab Eng ; 80: 163-172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778408

RESUMO

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Assuntos
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Succinatos/metabolismo
17.
Clin Proteomics ; 20(1): 38, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735622

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. METHODS: This systematic review was registered with Open Science Framework ( https://doi.org/10.17605/OSF.IO/N8TSA ). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. RESULTS: A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 (11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation in at least 2 independent studies at post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. CONCLUSIONS: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

18.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537586

RESUMO

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Assuntos
Proteômica , Xilose , Xilose/metabolismo , Pentoses , Glucose/metabolismo
19.
Anal Chem ; 95(33): 12195-12199, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37551970

RESUMO

Mass spectrometry is a powerful tool for identifying and analyzing biomolecules such as metabolites and lipids in complex biological samples. Liquid chromatography and gas chromatography mass spectrometry studies quite commonly involve large numbers of samples, which can require significant time for sample preparation and analyses. To accommodate such studies, the samples are commonly split into batches. Inevitably, variations in sample handling, temperature fluctuation, imprecise timing, column degradation, and other factors result in systematic errors or biases of the measured abundances between the batches. Numerous methods are available via R packages to assist with batch correction for omics data; however, since these methods were developed by different research teams, the algorithms are available in separate R packages, each with different data input and output formats. We introduce the malbacR package, which consolidates 11 common batch effect correction methods for omics data into one place so users can easily implement and compare the following: pareto scaling, power scaling, range scaling, ComBat, EigenMS, NOMIS, RUV-random, QC-RLSC, WaveICA2.0, TIGER, and SERRF. The malbacR package standardizes data input and output formats across these batch correction methods. The package works in conjunction with the pmartR package, allowing users to seamlessly include the batch effect correction in a pmartR workflow without needing any additional data manipulation.


Assuntos
Algoritmos , Projetos de Pesquisa , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas
20.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37502972

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß-cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers of autoimmunity - is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar timeframe. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...