Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New For (Dordr) ; 54(4): 661-696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361260

RESUMO

Dutch elm disease (DED) is a vascular wilt disease caused by the pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi with multiple ecological phases including pathogenic (xylem), saprotrophic (bark) and vector (beetle flight and beetle feeding wound) phases. Due to the two DED pandemics during the twentieth century the use of elms in landscape and forest restoration has declined significantly. However new initiatives for elm breeding and restoration are now underway in Europe and North America. Here we discuss complexities in the DED 'system' that can lead to unintended consequences during elm breeding and some of the wider options for obtaining durability or 'field resistance' in released material, including (1) the phenotypic plasticity of disease levels in resistant cultivars infected by O. novo-ulmi; (2) shortcomings in test methods when selecting for resistance; (3) the implications of rapid evolutionary changes in current O. novo-ulmi populations for the choice of pathogen inoculum when screening; (4) the possibility of using active resistance to the pathogen in the beetle feeding wound, and low attractiveness of elm cultivars to feeding beetles, in addition to resistance in the xylem; (5) the risk that genes from susceptible and exotic elms be introgressed into resistant cultivars; (6) risks posed by unintentional changes in the host microbiome; and (7) the biosecurity risks posed by resistant elm deployment. In addition, attention needs to be paid to the disease pressures within which resistant elms will be released. In the future, biotechnology may further enhance our understanding of the various resistance processes in elms and our potential to deploy trees with highly durable resistance in elm restoration. Hopefully the different elm resistance processes will prove to be largely under durable, additive, multigenic control. Elm breeding programmes cannot afford to get into the host-pathogen arms races that characterise some agricultural host-pathogen systems.

2.
IMA Fungus ; 14(1): 4, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823663

RESUMO

Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.

3.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803849

RESUMO

As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.

4.
For Pathol ; 49(2): e12484, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31130819

RESUMO

We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five-point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), "pre-top dead," with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening.

5.
Fungal Biol ; 121(2): 112-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28089043

RESUMO

Following recent discovery of Phytophthora lateralis on native Chamaecyparis obtusa in Taiwan, four phenotypically distinct lineages were discriminated: the Taiwan J (TWJ) and Taiwan K (TWK) in Taiwan, the Pacific Northwest (PNW) in North America and Europe and the UK in west Scotland. Across the four lineages, we analysed 88 isolates from multiple sites for microsatellite diversity. Twenty-one multilocus genotypes (MLGs) were resolved with high levels of diversity of the TWK and PNW lineages. No alleles were shared between the PNW and the Taiwanese lineages. TWK was heterozygous at three loci, whereas TWJ isolates were homozygous apart from one isolate, which exhibited a unique allele also present in the TWK lineage. PNW lineage was heterozygous at three loci. The evidence suggests its origin may be a yet unknown Asian source. North American and European PNW isolates shared all their alleles and also a dominant MLG, consistent with a previous proposal that this lineage is a recent introduction into Europe from North America. The UK lineage was monomorphic and homozygous at all loci. It shared its alleles with the PNW and the TWJ and TWK lineages, hence a possible origin in a recent hybridisation event between a Taiwan lineage and PNW cannot be ruled out.


Assuntos
Variação Genética , Repetições de Microssatélites , Phytophthora/classificação , Phytophthora/genética , Chamaecyparis/microbiologia , Europa (Continente) , Evolução Molecular , América do Norte , Phytophthora/isolamento & purificação , Análise de Sequência de DNA , Taiwan
6.
Fungal Biol ; 116(12): 1232-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23245617

RESUMO

Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest (PNW). Since the 1990s however disease outbreaks have occurred increasingly on ornamental C. lawsoniana in Europe; and in 2007 the pathogen was discovered in soil around old growth Chamaecyparis obtusa in Taiwan, where it may be endemic. When the phenotypes of over 150 isolates of P. lateralis from Taiwan, across the PNW (British Columbia to California) and from France, the Netherlands and the UK were compared three growth rate groups were resolved: one slow growing from Taiwan, one fast growing from the PNW and Europe, and one of intermediate growth from a small area of the UK. Within these growth groups distinct subtypes were identified based on colony patterns and spore metrics and further discriminated in a multivariate analysis. The assumption that the three main growth groups represented phylogenetic units was tested by comparative sequencing of two mitochondrial and three nuclear genes. This assumption was confirmed. In addition two phenotype clusters within the Taiwan growth group were also shown to be phylogenetically distinct. These four phenotypically and genotypically unique populations are informally designated as the PNW lineage, the UK lineage, the Taiwan J lineage, and the Taiwan K lineage. Their characteristics and distribution are described and their evolution, taxonomic, and plant health significance is discussed.


Assuntos
Chamaecyparis/microbiologia , Variação Genética , Phytophthora/classificação , Phytophthora/genética , Microbiologia do Solo , Ásia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Europa (Continente) , Genótipo , Microscopia , Dados de Sequência Molecular , América do Norte , Fenótipo , Filogenia , Phytophthora/isolamento & purificação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Esporos Fúngicos/citologia
7.
Fungal Biol ; 116(11): 1178-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23153808

RESUMO

Phytophthora ramorum is a recently introduced, aggressive Phytophthora species that has caused extensive mortality of oak and tanoak trees in the western USA and Japanese larch trees in the UK. P. ramorum is also present on Rhododendron, Camellia, and Viburnum in the nursery industry, which is thought to have been the pathway for its spread into new geographic regions including forests and natural ecosystems. Three lineages of P. ramorum have been described, informally designated EU1, NA1, and NA2, and each lineage is believed to originate from an as yet unknown exotic centre of origin. Preliminary SSR and sequence analysis of isolates from a UK P. ramorum survey revealed seven isolates with profiles that did not match the previously known lineages. Detailed SSR and multilocus sequence analysis of these isolates are presented, allowing us to assign these isolates to a new P. ramorum lineage, designated EU2. Although the known geographical origin of these isolates is currently limited to Northern Ireland and western Scotland, the EU2 lineage isolates have been obtained from four different host plants, including Japanese larch. All isolates are of A1 compatibility type, which implies that this finding does not increase the risk of outcrossing with the EU1 lineage isolates already present in the UK. The oldest EU2 strain was isolated in 2007 but no SSR-based intraEU2 lineage genotypic diversity was detected. The combination of these elements points to a recent introduction, despite emergency phytosanitary measures to control introduction and spread. A PCR-RFLP method for the rapid identification of EU2 lineage isolates is presented.


Assuntos
Phytophthora/genética , Doenças das Plantas/microbiologia , Árvores , Sequência de Bases , DNA/química , DNA/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Dados de Sequência Molecular , Irlanda do Norte , Filogenia , Phytophthora/classificação , Doenças das Plantas/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Escócia , Alinhamento de Sequência , Análise de Sequência de DNA , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...