Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(1): 1085-1094, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871087

RESUMO

Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: A scalable algorithm for the computation of merge trees via extremum graphs. The core idea of ExTreeM is to first derive the extremum graph G of an input scalar field f defined on a cell complex K, and subsequently compute the unaugmented merge tree of f on G instead of K; which are equivalent. Any merge tree algorithm can be carried out significantly faster on G, since K in general contains substantially more cells than G. To further speed up computation, ExTreeM includes a tailored procedure to derive merge trees of extremum graphs. The computation of the fully augmented merge tree, i.e., a merge tree domain segmentation of K, can then be performed in an optional post-processing step. All steps of ExTreeM consist of procedures with high parallel efficiency, and we provide a formal proof of its correctness. Our experiments, performed on publicly available datasets, report a speedup of up to one order of magnitude over the state-of-the-art algorithms included in the TTK and VTK-m software libraries, while also requiring significantly less memory and exhibiting excellent scaling behavior.

2.
IEEE Trans Vis Comput Graph ; 28(10): 3471-3485, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684039

RESUMO

Contour trees are used for topological data analysis in scientific visualization. While originally computed with serial algorithms, recent work has introduced a vector-parallel algorithm. However, this algorithm is relatively slow for fully augmented contour trees which are needed for many practical data analysis tasks. We therefore introduce a representation called the hyperstructure that enables efficient searches through the contour tree and use it to construct a fully augmented contour tree in data parallel, with performance on average 6 times faster than the state-of-the-art parallel algorithm in the TTK topological toolkit.


Assuntos
Gráficos por Computador , Algoritmos
3.
Microsc Microanal ; 27(4): 804-814, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34353384

RESUMO

Phase-contrast transmission electron microscopy (TEM) is a powerful tool for imaging the local atomic structure of materials. TEM has been used heavily in studies of defect structures of two-dimensional materials such as monolayer graphene due to its high dose efficiency. However, phase-contrast imaging can produce complex nonlinear contrast, even for weakly scattering samples. It is, therefore, difficult to develop fully automated analysis routines for phase-contrast TEM studies using conventional image processing tools. For automated analysis of large sample regions of graphene, one of the key problems is segmentation between the structure of interest and unwanted structures such as surface contaminant layers. In this study, we compare the performance of a conventional Bragg filtering method with a deep learning routine based on the U-Net architecture. We show that the deep learning method is more general, simpler to apply in practice, and produces more accurate and robust results than the conventional algorithm. We provide easily adaptable source code for all results in this paper and discuss potential applications for deep learning in fully automated TEM image analysis.

4.
IEEE Trans Vis Comput Graph ; 27(4): 2437-2454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689193

RESUMO

As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg V lg t) parallel steps and O(V lg V) work for data with V samples and t contour tree supernodes, and implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared to the serial sweep and merge algorithm.

5.
IEEE Trans Vis Comput Graph ; 26(1): 249-258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31581084

RESUMO

This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.

6.
BMC Bioinformatics ; 18(Suppl 6): 236, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28617218

RESUMO

BACKGROUND: There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. RESULTS: We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our system detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. CONCLUSION: ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.


Assuntos
Encéfalo , Biologia Computacional/métodos , Eletrocorticografia/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Análise por Conglomerados , Epilepsia/fisiopatologia , Humanos , Software
7.
IEEE Comput Graph Appl ; 37(3): 96-104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459676

RESUMO

Application-oriented papers provide an important way to invigorate and cross-pollinate the visualization field, but the exact criteria for judging an application paper's merit remain an open question. This article builds on a panel at the 2016 IEEE Visualization Conference entitled "Application Papers: What Are They, and How Should They Be Evaluated?" that sought to gain a better understanding of prevalent views in the visualization community. This article surveys current trends that favor application papers, reviews the benefits and contributions of this paper type, and discusses their assessment in the review process. It concludes with recommendations to ensure that the visualization community is more inclusive to application papers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28113724

RESUMO

We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views-such as heat maps, node link diagrams and anatomical views-using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parameters gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. To demonstrate the utility of our tool, we present two case studies-exploring progressive supranuclear palsy, as well as memory encoding and retrieval.

9.
IEEE Trans Vis Comput Graph ; 19(3): 514-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22566472

RESUMO

Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity. We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and nonoverlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phase utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. This analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.


Assuntos
Algoritmos , Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Interface Usuário-Computador , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
10.
IEEE Comput Graph Appl ; 30(3): 22-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20650715

RESUMO

This article presents the results of experiments studying how the pure-parallelism paradigm scales to massive data sets, including 16,000 or more cores on trillion-cell meshes, the largest data sets published to date in the visualization literature. The findings on scaling characteristics and bottlenecks contribute to understanding how pure parallelism will perform in the future.

11.
Artigo em Inglês | MEDLINE | ID: mdl-20150669

RESUMO

The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex data sets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss 1) the integration of data clustering and visualization into one framework, 2) the application of data clustering to 3D gene expression data, 3) the evaluation of the number of clusters k in the context of 3D gene expression clustering, and 4) the improvement of overall analysis quality via dedicated postprocessing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.


Assuntos
Mapeamento Cromossômico/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Modelos Genéticos , Família Multigênica/genética , Interface Usuário-Computador , Gráficos por Computador , Simulação por Computador , Integração de Sistemas
12.
IEEE Trans Vis Comput Graph ; 16(2): 248-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20075485

RESUMO

This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multiresolution representation. Third, for a given parameter selection, we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy, we can perform an extensive parameter study without reprocessing the data for each set of parameters. The resulting statistics enable scientists to select appropriate parameters and provide insight into the sensitivity of the results with respect to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counterintuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.


Assuntos
Gráficos por Computador , Incêndios , Temperatura Alta , Hidrogênio/química , Armazenamento e Recuperação da Informação/métodos , Reologia/métodos , Interface Usuário-Computador , Simulação por Computador , Imageamento Tridimensional/métodos , Modelos Químicos
13.
Procedia Comput Sci ; 1(1): 1757-1764, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-23762211

RESUMO

Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies -such as efficient data management- supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

14.
Artigo em Inglês | MEDLINE | ID: mdl-19407353

RESUMO

During animal development, complex patterns of gene expression provide positional information within the embryo. To better understand the underlying gene regulatory networks, the Berkeley Drosophila Transcription Network Project (BDTNP) has developed methods that support quantitative computational analysis of three-dimensional (3D) gene expression in early Drosophila embryos at cellular resolution. We introduce PointCloudXplore (PCX), an interactive visualization tool that supports visual exploration of relationships between different genes' expression using a combination of established visualization techniques. Two aspects of gene expression are of particular interest: 1) gene expression patterns defined by the spatial locations of cells expressing a gene and 2) relationships between the expression levels of multiple genes. PCX provides users with two corresponding classes of data views: 1) Physical Views based on the spatial relationships of cells in the embryo and 2) Abstract Views that discard spatial information and plot expression levels of multiple genes with respect to each other. Cell Selectors highlight data associated with subsets of embryo cells within a View. Using linking, these selected cells can be viewed in multiple representations. We describe PCX as a 3D gene expression visualization tool and provide examples of how it has been used by BDTNP biologists to generate new hypotheses.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Imageamento Tridimensional/métodos , Animais , Simulação por Computador , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fatores de Transcrição Fushi Tarazu/genética , Fatores de Transcrição Fushi Tarazu/metabolismo , Regulação da Expressão Gênica , Genoma de Inseto , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Genéticos , Modelos Estatísticos , Software , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Interface Usuário-Computador
15.
Cell ; 133(2): 364-74, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423206

RESUMO

To fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos. We establish the method's accuracy by showing that relationships between a pair of genes' expression inferred from the model are nearly identical to those measured in embryos costained for the pair. We present a VirtualEmbryo containing data for 95 genes at six time cohorts. We show that known gene-regulatory interactions can be automatically recovered from this data set and predict hundreds of new interactions.


Assuntos
Drosophila melanogaster/genética , Redes Reguladoras de Genes , Modelos Genéticos , Animais , Blastoderma , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos
16.
BMC Cell Biol ; 8 Suppl 1: S10, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17634091

RESUMO

BACKGROUND: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. RESULTS: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. CONCLUSION: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia de Coerência Óptica , Algoritmos , Oftalmopatias/patologia , Expressão Gênica , Humanos , Conformação Proteica , Design de Software , Interface Usuário-Computador
17.
IEEE Trans Vis Comput Graph ; 13(2): 330-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17218749

RESUMO

Topology provides a foundation for the development of mathematically sound tools for processing and exploration of scalar fields. Existing topology-based methods can be used to identify interesting features in volumetric data sets, to find seed sets for accelerated isosurface extraction, or to treat individual connected components as distinct entities for isosurfacing or interval volume rendering. We describe a framework for direct volume rendering based on segmenting a volume into regions of equivalent contour topology and applying separate transfer functions to each region. Each region corresponds to a branch of a hierarchical contour tree decomposition, and a separate transfer function can be defined for it. The novel contributions of our work are 1) a volume rendering framework and interface where a unique transfer function can be assigned to each subvolume corresponding to a branch of the contour tree, 2) a runtime method for adjusting data values to reflect contour tree simplifications, 3) an efficient way of mapping a spatial location into the contour tree to determine the applicable transfer function, and 4) an algorithm for hardware-accelerated direct volume rendering that visualizes the contour tree-based segmentation at interactive frame rates using graphics processing units (GPUs) that support loops and conditional branches in fragment programs.


Assuntos
Algoritmos , Gráficos por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
18.
Genome Biol ; 7(12): R123, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17184546

RESUMO

BACKGROUND: To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution. RESULTS: Here we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that our methods are sufficiently accurate to detect previously undescribed features of morphology and gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear density patterns and apical/basal displacements that correlate with later well-known morphological features. Pair rule gene expression stripes, generally considered to specify patterning only along the anterior/posterior body axis, are shown to have complex changes in stripe location, stripe curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not always maintain the same register to each other. CONCLUSION: The application of these quantitative methods to other developmental systems will likely reveal many other previously unknown features and provide a more rigorous understanding of developmental regulatory networks.


Assuntos
Blastoderma/citologia , Drosophila melanogaster/genética , Expressão Gênica , Animais , Sequência de Bases , Primers do DNA , Drosophila melanogaster/embriologia , Corantes Fluorescentes , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...