Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(14): 4010-4018, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440977

RESUMO

Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N-H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium(iii) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH2)2Cl]+, or results in dehydrohalogenation to the rhenium(iii) amido complex, (PNP)Re(NH2)Cl. The N-H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N-H bonds is 57 kcal mol-1, while DFT computations indicate a substantially weaker N-H bond of the putative rhenium(iv)-imide intermediate (BDE = 38 kcal mol-1). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH3 generation.

2.
Inorg Chem ; 60(9): 6115-6124, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847125

RESUMO

Bimetallic nitrogen (N2) splitting to form metal nitrides is an attractive method for N2 fixation. Although a growing number of pincer-supported systems can bind and split N2, the precise relationship between the ligand properties and N2 binding/splitting remains elusive. Here we report the first example of an N2-bridged rhenium(III) complex, [(trans-P2tBuPyrr)ReCl2]2(µ-η1:η1-N2) (P2tBuPyrr = [2,5-(CH2PtBu2)2C4H2N]-). In this case, N2 binding occurs at a higher oxidation level than that in other reported pincer analogues. Analysis of the electronic structure through computational studies shows that the weakly π-donor pincer ligand stabilizes an open-shell electronic configuration that leads to enhanced binding of N2 in the bridged complex. Utilizing SQUID magnetometry, we demonstrate a singlet ground state for this Re-N-N-Re complex, and we offer tentative explanations for antiferromagnetic coupling of the two local S = 1 sites. Reduction and subsequent heating of the rhenium(III)-dinitrogen complex leads to chloride loss and cleavage of the N-N bond with isolation of the terminal rhenium(V) nitride complex (P2tBuPyrr)ReNCl.

3.
Inorg Chem ; 59(14): 9807-9823, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32614596

RESUMO

Four groups of rare-earth complexes, comprising 11 new compounds, with fluorinated O-donor ligands ([K(THF)6][Ln(OC4F9)4(THF)2] (1-Ln; Ln = Ce, Nd), [K](THF)x[Ln(OC4F9)4(THF)y] (2-Ln; Ln = Eu, Gd, Dy), [K(THF)2][Ln(pinF)2(THF)3] (3-Ln; Ln = Ce, Nd), and [K(THF)2][Ln(pinF)2(THF)2] (4-Ln; Ln = Eu, Gd, Dy, Y) have been synthesized and characterized. Single-crystal X-ray diffraction data were collected for all compounds except 2-Ln. Species 1-Ln, 3-Ln, and 4-Ln are uncommon examples of six-coordinate (Eu, Gd, Dy, and Y) and seven-coordinate (Ce and Nd) LnIII centers in all-O-donor environments. Species 1-Ln, 2-Ln, 3-Ln, and 4-Ln are all luminescent (except where Ln = Gd and Y), with the solid-state emission of 1-Ce being exceptionally blue-shifted for a Ce complex. The emission spectra of the six Nd, Eu, and Dy complexes do not show large differences based on the ligand and are generally consistent with the well-known free-ion spectra. Time-dependent density functional theory results show that 1-Ce and 3-Ce undergo allowed 5f → 4d excitations, consistent with luminescence lifetime measurements in the nanosecond range. Eu-containing 2-Eu and 4-Eu, however, were found to have luminescence lifetimes in the millisecond range, indicating phosphorescence rather than fluorescence. The performance of a pair of multireference models for prediction of the Ln = Nd, Eu, and Dy absorption spectra was assessed. It was found that spectroscopy-oriented configuration interaction as applied to a simplified model in which the free-ion lanthanide was embedded in ligand-centered Löwdin point charges performed as well (Nd) or better (Eu and Dy) than canonical NEVPT2 calculations, when the ligand orbitals were included in the treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...