Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 17380-17388, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381474

RESUMO

We demonstrate laser-written concave hemispherical structures produced on the endfacets of optical fibers that serve as mirror substrates for tunable open-access microcavities. We achieve finesse values of up to 200, and a mostly constant performance across the entire stability range. This enables cavity operation also close to the stability limit, where a peak quality factor of 1.5 × 104 is reached. Together with a small mode waist of 2.3 µm, the cavity achieves a Purcell factor of C ∼ 2.5, which is useful for experiments that require good lateral optical access or otherwise large separation of the mirrors. Laser-written mirror profiles can be produced with a tremendous flexibility in shape and on various surfaces, opening new possibilities for microcavities.

2.
Opt Express ; 30(18): 32292-32305, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242294

RESUMO

We discuss the coupling efficiency of single-photon sources into single-mode fibers using 3D printed micro-optical lens designs. Using the wave propagation method, we optimize lens systems for two different quantum light sources and assess the results in terms of maximum coupling efficiencies, misalignment effects, and thermo-optical influences. Thereby, we compare singlet lens designs with one lens printed onto the fiber with doublet lens designs with an additional lens printed onto the semiconductor substrate. The single-photon sources are quantum dots based on microlenses and circular Bragg grating cavities at 930 nm and 1550 nm, respectively.

3.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221446

RESUMO

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

4.
Opt Lett ; 45(10): 2784-2787, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412466

RESUMO

In this Letter, we present a 3D-printed complex wide-angle multi-element Hypergon micro-objective, composed of aspherical lenses smaller than 1 mm, which exhibits distortion-free imaging performance. The objective is fabricated by a multi-step femtosecond two-photon lithography process. To realize the design, we apply a novel (to the best of our knowledge) approach using shadow evaporation to create highly non-transparent aperture stops, which are crucial components in many optical systems. We achieve a field-of-view (FOV) of 70°, at a resolution of 12.4 µm, and distortion-free imaging over the entire FOV. In the future, such objectives can be directly printed onto complementary metal-oxide-semiconductor (CMOS) imaging chips to produce extremely compact, high-quality image sensors to yield integrated sensor devices used in industry.

5.
Nano Lett ; 18(9): 5576-5582, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30075631

RESUMO

We demonstrate second-harmonic generation with ultranarrow resonances in hybrid plasmon-fiber cavities, formed by depositing single-crystalline gold nanorods onto the surface of tapered microfibers with diameters in the range of 1.7-1.8 µm. The localized surface plasmon mode of the single gold nanorod efficiently couples with a whispering gallery mode of the fiber, resulting in a very narrow hybrid plasmon-fiber resonance with a high quality factor Q of up to 250. When illuminated with a tunable 100 fs laser, a sharp SHG peak narrower than half of the spectral width of the impinging laser emerges, superimposed on a broad multiphoton photoluminescence background. The enhancement of the SHG peak of the hybrid system is typically 1000-fold when compared to that of a single gold nanorod alone. Tuning the laser over the hybrid resonance enables second-harmonic spectroscopy and yields an ultranarrow line width as small as 6.4 nm. We determine the second-harmonic signal to rise with the square of the laser power, while the multiphoton photoluminescence background rises with powers between 4 and 6, indicating a very efficient higher-order process. A coupled anharmonic oscillator model is able to describe the linear as well as second-harmonic resonances very well. Our work will open the door to the simultaneous utilization of narrow whispering gallery resonances together with high plasmonic near-field enhancement and should allow for nonlinear sensing and extremely efficient nonlinear light generation from ultrasmall volumes.

6.
Opt Express ; 25(17): 19672-19679, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041655

RESUMO

We demonstrate orbital-angular momentum (OAM) light up to a topological charge of l=3 behind a single mode fiber. Femtosecond 3D direct laser writing is used to fabricate spiral phase plates of l=1,2 and 3, composed of 10 discrete steps, on the tip of single mode optical fibers. These structures efficiently convert out-coupled light from the fiber at 785 nm wavelength into optical vortex beams carrying an orbital-angular momentum of lℏper photon. Far field intensity patterns and interferograms of the OAM beams are recorded using a CCD camera. The results are in excellent agreement with numerical simulations obtained from the wave propagation method.

7.
Chem Rev ; 117(7): 5110-5145, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28358482

RESUMO

Infrared spectroscopy is a powerful tool widely used in research and industry for a label-free and unambiguous identification of molecular species. Inconveniently, its application to spectroscopic analysis of minute amounts of materials, for example, in sensing applications, is hampered by the low infrared absorption cross-sections. Surface-enhanced infrared spectroscopy using resonant metal nanoantennas, or short "resonant SEIRA", overcomes this limitation. Resonantly excited, such metal nanostructures feature collective oscillations of electrons (plasmons), providing huge electromagnetic fields on the nanometer scale. Infrared vibrations of molecules located in these fields are enhanced by orders of magnitude enabling a spectroscopic characterization with unprecedented sensitivity. In this Review, we introduce the concept of resonant SEIRA and discuss the underlying physics, particularly, the resonant coupling between molecular and antenna excitations as well as the spatial extent of the enhancement and its scaling with frequency. On the basis of these fundamentals, different routes to maximize the SEIRA enhancement are reviewed including the choice of nanostructures geometries, arrangements, and materials. Furthermore, first applications such as the detection of proteins, the monitoring of dynamic processes, and hyperspectral infrared chemical imaging are discussed, demonstrating the sensitivity and broad applicability of resonant SEIRA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...