Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16419, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180564

RESUMO

Extended cut-off filtration by medium cut-off membranes (MCO) has been shown to be safe in maintenance hemodialysis (HD). The notion of using them for the control of chronic low-grade inflammation and positively influencing cellular immune aberrations seems tempting. We conducted an open label, multicenter, randomized, 90 day 2-phase cross over clinical trial (MCO- vs. high flux-HD). 46 patients underwent randomization of which 34 completed the study. Dialysate- or pre- and post-dialysis serum inflammatory mediators were assayed for each study visit. Ex vivo T cell activation was assessed from cryopreserved leucocytes by flow cytometry. Linear mixed models were used to compare treatment modalities, with difference in pre-dialysis serum MCP-1 levels after 3 months as the predefined primary endpoint. Filtration/dialysate concentrations of most mediators, including MCP-1 (mean ± SD: 10.5 ± 5.9 vs. 5.1 ± 3.8 pg/ml, P < 0.001) were significantly increased during MCO- versus high flux-HD. However, except for the largest mediator studied, i.e., YKL-40, this did not confer any advantages for single session elimination kinetics (post-HD mean ± SD: 360 ± 334 vs. 564 ± 422 pg/ml, P < 0.001). No sustained reduction of any of the studied mediators was found neither. Still, the long-term reduction of CD69+ (P = 0.01) and PD1+ (P = 0.02) activated CD4+ T cells was striking. Thus, MCO-HD does not induce reduction of a broad range of inflammatory mediators studied here. Long-term reduction over a 3-month period was not possible. Increased single session filtration, as evidenced by increased dialysate concentrations of inflammatory mediators during MCO-HD, might eventually be compensated for by compartment redistribution or increased production during dialysis session. Nevertheless, lasting effects on the T-cell phenotype were seen, which deserves further investigation.


Assuntos
Hemodiafiltração , Cefalosporinas , Proteína 1 Semelhante à Quitinase-3 , Estudos Cross-Over , Soluções para Diálise , Humanos , Inflamação , Mediadores da Inflamação , Membranas Artificiais , Fenótipo , Estudos Prospectivos , Diálise Renal
2.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669576

RESUMO

Even though various commercial Smart City solutions are widely available on the market, we are still witnessing their rather limited adoption, where solutions are typically bound to specific verticals or remain in pilot stages. In this paper we argue that the lack of a Smart City regulatory framework is one of the major obstacles for a wider adoption of Smart City services in practice. Such framework should be accompanied by examples of good practice which stress the necessity of adopting interoperable Smart City services. Development and deployment of Smart City services can incur significant costs to cities, service providers and sensor manufacturers, and thus it is vital to adjust national legislation to ensure legal certainty to all stakeholders, and at the same time to protect interests of the citizens and the state. Additionally, due to a vast number of heterogeneous devices and Smart City services, both existing and future, their interoperability becomes vital for service replicability and massive deployment leading to digital transformation of future cities. The paper provides a classification of technical and regulatory characteristics of IoT services for Smart Cities which are mapped to corresponding roles in the IoT value chain. Four example use cases are chosen-Smart Parking, Smart Metering, Smart Street Lighting and Mobile Crowd Sensing-to showcase the legal implications relevant to each service. Based on the analysis, we propose a set of recommendations for each role in the value chain related to regulatory requirements of the aforementioned Smart City services. The analysis and recommendations serve as examples of good practice in hope that they will facilitate a wider adoption and longevity of IoT-based Smart City services.

3.
Ambio ; 47(Suppl 1): 146-158, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164540

RESUMO

The EU-water framework directive aims at nutrient reductions, since anthropogenically induced eutrophication is a major threat for coastal waters. However, phytoplankton biomass in southern Baltic Sea coastal water bodies (CWB) remains high and the underlying mechanisms are not well understood. Therefore, a CWB data set was analysed regarding changes in phytoplankton biomass and nutrient concentration of nitrogen (N) and phosphorus (P) from 2000 to 2014. It was expected to find imbalances between produced phytoplankton biomass and total nutrient concentrations. Inner CWB were cyanobacteria-dominated and showed up to five times higher chlorophyll a-concentrations compared to outer CWB with similar total phosphorus-concentrations. Phytoplankton tended to be P-limited during spring and N-limited during summer. Phytoplankton biomass and nutrient concentrations were even higher during very humid years, which indicated a close coupling of the CWB with their catchment areas. This study suggests that re-mesotrophication efforts need to consider the importance of changed phytoplankton composition and nutrient availabilities.


Assuntos
Eutrofização , Fitoplâncton , Biomassa , Clorofila , Clorofila A , Nitrogênio , Fósforo
5.
Mar Pollut Bull ; 96(1-2): 127-35, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26003386

RESUMO

Full-coverage maps on the distribution of marine biotopes are a necessary basis for Nature Conservation and Marine Spatial Planning. Yet biotope maps do not exist in many regions. We are generating the first full-coverage biotope map for the German Baltic Sea according to the HELCOM Underwater biotope and habitat classification system (HUB). Species distribution modelling is applied to create full-coverage spatial information of biological features. The results of biomass modelling of twelve target taxa and presence/absence modelling of three target taxa enabled the identification of biological levels up to HUB level 6. Environmental data on bathymetry, light penetration depth and substrate are used to identify habitat levels. HUB biotope levels were combined with HUB habitat levels to create a biotope map. Altogether, 68 HUB biotopes are identified in the German Baltic Sea. The new biotope map combining substrate characteristics and biological communities will facilitate marine management in the area.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Países Bálticos , Biomassa , Meio Ambiente , Alemanha , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...