Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(11): e16250, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37812737

RESUMO

PREMISE: In 1879, Dr. William Beal buried 20 glass bottles filled with seeds and sand at a single site at Michigan State University. The goal of the experiment was to understand seed longevity in the soil, a topic of general importance in ecology, restoration, conservation, and agriculture, by periodically assaying germinability of these seeds over 100 years. The interval between germination assays has been extended and the experiment will now end after 221 years, in 2100. METHODS: We dug up the 16th bottle in April 2021 and attempted to germinate the 141-year-old seeds it contained. We grew germinants to maturity and identified these to species by vegetative and reproductive phenotypes. For the first time in the history of this experiment, genomic DNA was sequenced to confirm species identities. RESULTS: Twenty seeds germinated over the 244-day assay. Eight germinated in the first 11 days. All 20 belonged to the Verbascum genus: Nineteen were V. blattaria according to phenotype and ITS2 genotype; and one had a hybrid V. blattaria × V. thapsus phenotype and ITS2 genotype. In total, 20/50 (40%) of the original Verbascum seeds in the bottle germinated in year 141. CONCLUSIONS: While most species in the Beal experiment lost all seed viability in the first 60 years, a high percentage of Verbascum seeds can still germinate after 141 years in the soil. Long-term experiments such as this one are rare and invaluable for studying seed viability in natural soil conditions.


Assuntos
Germinação , Sementes , Humanos , Sementes/genética , Solo , Agricultura , Ecologia
2.
Evolution ; 77(10): 2301-2313, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37527551

RESUMO

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species' contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.


Assuntos
Vitis , Filogenia , Evolução Biológica , Folhas de Planta , Plantas , Herbivoria
3.
Proc Biol Sci ; 290(1991): 20222293, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651051

RESUMO

A critical function of animal coloration is avoiding attack, either by warning predators or reducing detectability. Evolution of these divergent strategies may depend on prey palatability and apparency to predators: conspicuous coloration may be favoured if species are distasteful, or habitats make hiding difficult; by contrast, camouflage may be effective if prey lack defences or environments are visually complex. For insect herbivores, host plants provide both chemical defence and the background against which they are detected or obscured; thus, plant traits may be key to coloration in these foundational terrestrial organisms. We use 1808 species of larval Lepidoptera to explore macroevolution of protective coloration strategy. We find that colour and pattern evolve jointly in caterpillars, similar to an array of species across the animal kingdom, while individual elements of coloration evolve closely with diet ecology. Consistent with key tenets of plant defence and plant-herbivore coevolutionary theory, conspicuous colours are associated with herbaceous host plants-thought to be defended by toxins-while camouflage colours and patterns are associated with woody plants and grasses. Contrary to theory, dietary specialization is not associated with conspicuous coloration. Our results add valuable insights into the evolutionary forces shaping colour and pattern in nature.


Assuntos
Lepidópteros , Pigmentação , Animais , Insetos , Larva , Plantas , Comportamento Predatório , Evolução Biológica
4.
Syst Biol ; 72(3): 590-605, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36380474

RESUMO

Rates of phenotypic evolution vary markedly across the tree of life, from the accelerated evolution apparent in adaptive radiations to the remarkable evolutionary stasis exhibited by so-called "living fossils." Such rate variation has important consequences for large-scale evolutionary dynamics, generating vast disparities in phenotypic diversity across space, time, and taxa. Despite this, most methods for estimating trait evolution rates assume rates vary deterministically with respect to some variable of interest or change infrequently during a clade's history. These assumptions may cause underfitting of trait evolution models and mislead hypothesis testing. Here, we develop a new trait evolution model that allows rates to vary gradually and stochastically across a clade. Further, we extend this model to accommodate generally decreasing or increasing rates over time, allowing for flexible modeling of "early/late bursts" of trait evolution. We implement a Bayesian method, termed "evolving rates" (evorates for short), to efficiently fit this model to comparative data. Through simulation, we demonstrate that evorates can reliably infer both how and in which lineages trait evolution rates varied during a clade's history. We apply this method to body size evolution in cetaceans, recovering substantial support for an overall slowdown in body size evolution over time with recent bursts among some oceanic dolphins and relative stasis among beaked whales of the genus Mesoplodon. These results unify and expand on previous research, demonstrating the empirical utility of evorates. [cetacea; macroevolution; comparative methods; phenotypic diversity; disparity; early burst; late burst].


Assuntos
Evolução Biológica , Cetáceos , Animais , Filogenia , Teorema de Bayes , Simulação por Computador
5.
Bioscience ; 72(5): 481-492, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592055

RESUMO

Sexual and gender minorities face considerable inequities in society, including in science. In biology, course content provides opportunities to challenge harmful preconceptions about what is "natural" while avoiding the notion that anything found in nature is inherently good (the appeal-to-nature fallacy). We provide six principles for instructors to teach sex- and gender-related topics in postsecondary biology in a more inclusive and accurate manner: highlighting biological diversity early, presenting the social and historical context of science, using inclusive language, teaching the iterative process of science, presenting students with a diversity of role models, and developing a classroom culture of respect and inclusion. To illustrate these six principles, we review the many definitions of sex and demonstrate applying the principles to three example topics: sexual reproduction, sex determination or differentiation, and sexual selection. These principles provide a tangible starting place to create more scientifically accurate, engaging, and inclusive classrooms.

6.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208920

RESUMO

Indirect defenses are plant phenotypes that reduce damage by attracting natural enemies of plant pests and pathogens to leaves. Despite their economic and ecological importance, few studies have investigated the genetic underpinnings of indirect defense phenotypes. Here, we present a genome-wide association study of five phenotypes previously determined to increase populations of beneficial (fungivorous and predacious) mites on grape leaves (genus Vitis): leaf bristles, leaf hairs, and the size, density, and depth of leaf domatia. Using a common garden genetic panel of 399 V. vinifera cultivars, we tested for genetic associations of these phenotypes using previously obtained genotyping data from the Vitis9kSNP array. We found one single nucleotide polymorphism (SNP) significantly associated with domatia density. This SNP (Chr5:1160194) is near two genes of interest: Importin Alpha Isoform 1 (VIT_205s0077g01440), involved in downy mildew resistance, and GATA Transcription Factor 8 (VIT_205s0077g01450), involved in leaf shape development. Our findings are among the first to examine the genomic regions associated with ecologically important plant traits that facilitate interactions with beneficial mites, and suggest promising candidate genes for breeding and genetic editing to increase naturally occurring predator-based defenses in grapevines.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Ácaros/fisiologia , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Animais , Resistência à Doença/imunologia , Genômica , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Vitis/imunologia , Vitis/parasitologia
7.
Proc Biol Sci ; 287(1929): 20200877, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576104

RESUMO

Textbooks shape teaching and learning in introductory biology and highlight scientists as potential role models who are responsible for significant discoveries. We explore a potential demographic mismatch between the scientists featured in textbooks and the students who use textbooks to learn core concepts in biology. We conducted a demographic analysis by extracting hundreds of human names from common biology textbooks and assessing the binary gender and race of featured scientists. We found that the most common scientists featured in textbooks are white men. However, women and scientists of colour are increasingly represented in contemporary scientific discoveries. In fact, the proportion of women highlighted in textbooks has increased in lockstep with the proportion of women in the field, indicating that textbooks are matching a changing demographic landscape. Despite these gains, the scientists portrayed in textbooks are not representative of their target audience-the student population. Overall, very few scientists of colour were highlighted, and projections suggest it could take multiple centuries at current rates before we reach inclusive representation. We call upon textbook publishers to expand upon the scientists they highlight to reflect the diverse population of learners in biology.


Assuntos
Biologia/educação , Demografia , Feminino , Humanos , Aprendizagem , Masculino
8.
Ecol Lett ; 23(7): 1137-1152, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394591

RESUMO

Indirect defence, the adaptive top-down control of herbivores by plant traits that enhance predation, is a central component of plant-herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant-natural enemy mutualism. By considering the broader scope of plant-herbivore-natural enemy interactions that comprise indirect defence, we can better understand plant-based food webs, as well as the evolutionary processes that have shaped them.


Assuntos
Insetos , Plantas , Animais , Ecossistema , Cadeia Alimentar , Herbivoria
9.
J Orthop Sports Phys Ther ; 50(7): 373-380, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32349639

RESUMO

OBJECTIVE: To reach consensus among international shoulder experts on the most appropriate assessment and management strategies for posterior shoulder instability (PSI). DESIGN: Delphi. METHODS: In phase 1 of the study, we reviewed the literature, generated the Delphi items, created the survey, and identified clinical experts. In phase 2 of the study, clinical shoulder experts (physical therapists, orthopaedic surgeons, sports medicine physicians, and researchers) participated in a 3-round e-Delphi survey. For consensus, we required a minimum of 70% agreement per round. Descriptive statistics were used to present the characteristics of the respondents, the response rate of the experts in each round, and the consensus for PSI classification, assessment, and management. RESULTS: Round 3 was completed by 47 individuals from 5 different countries. The response rate ranged from 57/70 (81%) to 47/50 (94%) per round. Respondents agreed on 3 subgroups to define PSI: traumatic (100% agreement), microtraumatic (98% agreement), and atraumatic (98% agreement). CONCLUSION: International shoulder experts agreed that the clinical presentation, management strategy, and outcome expectations differ for traumatic, microtraumatic, and atraumatic PSI. Their recommendations provide a framework for managing these subgroups, with additional consideration of sport and work participation and subsequent risks. J Orthop Sports Phys Ther 2020;50(7):373-380. Epub 29 Apr 2020. doi:10.2519/jospt.2020.9225.


Assuntos
Instabilidade Articular/classificação , Instabilidade Articular/terapia , Articulação do Ombro , Técnica Delphi , Humanos , Instabilidade Articular/diagnóstico , Instabilidade Articular/etiologia , Avaliação de Resultados em Cuidados de Saúde , Volta ao Esporte , Retorno ao Trabalho , Lesões do Ombro
10.
J Evol Biol ; 32(8): 769-782, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30968509

RESUMO

Species interactions lie at the heart of many theories of macroevolution, from adaptive radiation to the Red Queen. Although some theories describe the imprint that interactions will have over long timescales, we are still missing a comprehensive understanding of the effects of interactions on macroevolution. Current research shows strong evidence for the impact of interactions on macroevolutionary patterns of trait evolution and diversification, yet many macroevolutionary studies have only a tenuous relationship to ecological studies of interactions over shorter timescales. We review current research in this area, highlighting approaches that explicitly model species interactions and connect them to broad-scale macroevolutionary patterns. We also suggest that progress has been made by taking an integrative interdisciplinary look at individual clades. We focus on African cichlids as a case study of how this approach can be fruitful. Overall, although the evidence for species interactions shaping macroevolution is strong, further work using integrative and model-based approaches is needed to spur progress towards understanding the complex dynamics that structure communities over time and space.


Assuntos
Comportamento Competitivo , Ecossistema , Especiação Genética , Modelos Biológicos , Animais
11.
Trends Ecol Evol ; 34(8): 698-711, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31003875

RESUMO

Mutualisms - cooperative interactions among different species - are known to influence global biodiversity. Nevertheless, theoretical and empirical work has led to divergent hypotheses about how mutualisms modulate diversity. We ask here when and how mutualisms influence species richness. Our synthesis suggests that mutualisms can promote or restrict species richness depending on mutualist function, the level of partner dependence, and the specificity of the partnership. These characteristics, which themselves are influenced by environmental and geographic variables, regulate species richness at different scales by modulating speciation, extinction, and community coexistence. Understanding the relative impact of these mechanisms on species richness will require the integration of new phylogenetic comparative models as well as the manipulation and monitoring of experimental communities and their resulting interaction networks.


Assuntos
Biodiversidade , Simbiose , Filogenia , Especificidade da Espécie
12.
Am J Bot ; 105(4): 677-686, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29683473

RESUMO

PREMISE OF THE STUDY: Pachypodium (Apocynaceae) is a genus of iconic stem-succulent and poisonous plants endemic to Madagascar and southern Africa. We tested hypotheses about the mode of action and macroevolution of toxicity in this group. We further hypothesized that while monarch butterflies are highly resistant to cardenolide toxins (a type of cardiac glycoside) from American Asclepias, they may be negatively affected by Pachypodium defenses, which evolved independently. METHODS: We grew 16 of 21 known Pachypodium spp. and quantified putative cardenolides by HPLC and also by inhibition of animal Na+ /K+ -ATPase (the physiological target of cardiac glycosides) using an in vitro assay. Pachypodium extracts were tested against monarch caterpillars in a feeding bioassay. We also tested four Asclepias spp. and five Pachypodium spp. extracts, contrasting inhibition of the cardenolide-sensitive porcine Na+ /K+ -ATPase to the monarch's resistant form. KEY RESULTS: We found evidence for low cardenolides by HPLC, but substantial toxicity when extracts were assayed on Na+ /K+ -ATPases. Toxicity showed phylogenetic signal, and taller species showed greater toxicity (this was marginal after phylogenetic correction). Application of Pachypodium extracts to milkweed leaves reduced monarch growth, and this was predicted by inhibition of the sensitive Na+ /K+ -ATPase in phylogenetic analyses. Asclepias extracts were 100-fold less potent against the monarch compared to the porcine Na+ /K+ -ATPase, but this difference was absent for Pachypodium extracts. CONCLUSIONS: Pachypodium contains potent toxicity capable of inhibiting sensitive and cardenolide-adapted Na+ /K+ -ATPases. Given the monarch's sensitivity to Pachypodium, we suggest that these plants contain novel cardiac glycosides or other compounds that facilitate toxicity by binding to Na+ /K+ -ATPases.


Assuntos
Apocynaceae/toxicidade , Cardenolídeos/toxicidade , Animais , Apocynaceae/química , Asclepias/toxicidade , Bioensaio , Borboletas/efeitos dos fármacos , Cardenolídeos/isolamento & purificação , Glicosídeos Cardíacos/toxicidade , Cromatografia Líquida de Alta Pressão , Larva/efeitos dos fármacos , Filogenia , Extratos Vegetais/toxicidade , Folhas de Planta/química , Folhas de Planta/toxicidade , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
13.
Evolution ; 72(4): 798-807, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29464694

RESUMO

Because of their function as reproductive signals in plants, floral traits experience distinct selective pressures related to their role in speciation, reinforcement, and prolonged coexistence with close relatives. However, few studies have investigated whether population-level processes translate into detectable signatures at the macroevolutionary scale. Here, we ask whether patterns of floral trait evolution and range overlap across a clade of California Jewelflowers reflect processes hypothesized to shape floral signal differentiation at the population level. We found a pattern of divergence in floral scent composition across the clade such that close relatives had highly disparate floral scents given their age. Accounting for range overlap with close relatives explained additional variation in floral scent over time, with sympatric species pairs having diverged more than allopatric species pairs given their age. However, three other floral traits (flower size, scent complexity and flower color) did not fit these patterns, failing to deviate from a null Brownian motion model of evolution. Together, our results suggest that selection for divergence among close relatives in the composition of floral scents may play a key, sustained role in mediating speciation and coexistence dynamics across this group, and that signatures of these dynamics may persist at the macroevolutionary scale.


Assuntos
Evolução Biológica , Brassicaceae/fisiologia , Sinais (Psicologia) , Flores/fisiologia , Especiação Genética , California , Odorantes/análise , Polinização , Simpatria/fisiologia
14.
Ecology ; 99(2): 502, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226306

RESUMO

How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, four were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly, data exploration revealed that nodulating legume genera are ~3 × more species-rich than non-nodulating genera, but we did not find evidence that this difference in diversity was due to differences in net diversification rate. Our metadata file describes in more detail the structure of these data that provide a foundational resource for future work as more nodulation data become available, and as greater phylogenetic resolution of this ca. 19,500-species family comes into focus. We release this data set under the Creative Commons 4.0 Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/). The data may be used, distributed, and reproduced with proper citation of this article.

15.
Am Nat ; 190(S1): S13-S28, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28731829

RESUMO

Understanding processes that have shaped broad-scale biodiversity patterns is a fundamental goal in evolutionary biology. The development of phylogenetic comparative methods has yielded a tool kit for analyzing contemporary patterns by explicitly modeling processes of change in the past, providing neontologists tools for asking questions previously accessible only for select taxa via the fossil record or laboratory experimentation. The comparative approach, however, differs operationally from alternative approaches to studying convergence in that, for studies of only extant species, convergence must be inferred using evolutionary process models rather than being directly measured. As a result, investigation of evolutionary pattern and process cannot be decoupled in comparative studies of convergence, even though such a decoupling could in theory guard against adaptationist bias. Assumptions about evolutionary process underlying comparative tools can shape the inference of convergent pattern in sometimes profound ways and can color interpretation of such patterns. We discuss these issues and other limitations common to most phylogenetic comparative approaches and suggest ways that they can be avoided in practice. We conclude by promoting a multipronged approach to studying convergence that integrates comparative methods with complementary tests of evolutionary mechanisms and includes ecological and biogeographical perspectives. Carefully employed, the comparative method remains a powerful tool for enriching our understanding of convergence in macroevolution, especially for investigation of why convergence occurs in some settings but not others.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Biodiversidade
16.
Trends Ecol Evol ; 32(4): 291-304, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28215448

RESUMO

Despite a conceptual understanding that evolution and species interactions are inextricably linked, it remains challenging to study ecological and evolutionary dynamics together over long temporal scales. In this review, we argue that, despite inherent challenges associated with reconstructing historical processes, the interplay of ecology and evolution is central to our understanding of macroevolution and community coexistence, and cannot be safely ignored in community and comparative phylogenetic studies. We highlight new research avenues that foster greater consideration of both ecological and evolutionary dynamics as processes that occur along branches of phylogenetic trees. By promoting new ways forward using this perspective, we hope to inspire further integration that creatively co-utilizes phylogenies and ecological data to study eco-evolutionary dynamics over time and space.


Assuntos
Ecologia , Filogenia , Evolução Biológica , Ecossistema
17.
Ecol Lett ; 19(11): 1314-1323, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27581155

RESUMO

Theory predicts that both stabilising selection and diversifying selection jointly contribute to the evolution of sexual signalling traits by (1) maintaining the integrity of communication signals within species and (2) promoting the diversification of traits among lineages. However, for many important signalling traits, little is known about whether these dynamics translate into predictable macroevolutionary signatures. Here, we test for macroevolutionary patterns consistent with sexual signalling theory in the perfume signals of neotropical orchid bees, a group well studied for their chemical sexual communication. Our results revealed both high species-specificity and elevated rates of evolution in perfume signals compared to nonsignalling traits. Perfume complexity was correlated with the number of congeners in a species' range, suggesting that perfume evolution may be tied to the remarkably high number of orchid bee species coexisting together in some neotropical communities. Finally, sister-pair comparisons were consistent with both rapid divergence at speciation and character displacement upon secondary contact. Together, our results provide new insight into the macroevolution of sexual signalling in insects.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Evolução Biológica , Feromônios , Comportamento Sexual Animal/fisiologia , Comunicação Animal , Animais , Masculino , Feromônios/química , Feromônios/fisiologia , Especificidade da Espécie
19.
Ann Bot ; 118(3): 459-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343230

RESUMO

BACKGROUND AND AIMS: Mite domatia are small structures on the underside of plant leaves that provide homes for predacious or fungivorous mites. In turn, mites inhabiting domatia defend the plant by consuming leaf herbivores and pathogens, which can result in a domatia-mediated, plant-mite defence mutualism. Several recent studies have suggested that plants receive enhanced benefits when they provide a foliar food source, such as sugars secreted from extrafloral nectaries, to mite mutualists alongside mite domatia. However, the effect of foliar sugar on reducing leaf pathogen load via domatia-inhabiting mites has not been directly investigated. METHODS: To fill this gap, the links between foliar sugar addition, domatia-inhabiting mite abundance, and pathogen load were experimentally evaluated in wild grape. Furthermore, because the proposed combined benefits of providing food and housing have been hypothesized to select for the evolutionary correlation of extrafloral nectaries and domatia across plant lineages, a literature survey aimed at determining the overlap of mite domatia and extrafloral nectaries across plant groups was also conducted. KEY RESULTS: It was found that leaves with artificial addition of foliar sugar had 58-80 % more mites than leaves without foliar sugar addition, and that higher mite abundances translated to reduced powdery mildew (Erysiphe necator) loads on leaves. It was found that mite domatia and extrafloral nectaries occur non-randomly in the same clades across Eudicots. Genera with both traits are reported to highlight candidate lineages for future studies. CONCLUSIONS: Together, the results demonstrate that foliar sugar can indeed enhance the efficacy of domatia-mediated plant-mite mutualisms, and suggest that this synergism has the potential to influence the co-distribution of foliar nectar and mite domatia across plants.


Assuntos
Ascomicetos/fisiologia , Ácaros/fisiologia , Doenças das Plantas/prevenção & controle , Simbiose , Vitis/parasitologia , Animais , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Néctar de Plantas , Vitis/microbiologia , Vitis/fisiologia
20.
J Exp Biol ; 219(Pt 10): 1467-75, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27207952

RESUMO

Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral preferences/tibial contents, but confirms the utility of EAG profiling for discovering certain behaviorally active compounds.


Assuntos
Abelhas/fisiologia , Orchidaceae/parasitologia , Perfumes/análise , Olfato/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Masculino , Características de Residência , Solventes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...