Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(3): 1138-1147, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041390

RESUMO

Although N-(S)-phenylethyl peptoids are known to adopt helical structures in solutions, the corresponding positively charged ions lose their helical structure during the transfer from the solution to the gas phase due to the so-called charge solvation effect. We, here, considered negatively charged peptoids to investigate by ion mobility spectrometry-mass spectrometry whether the structural changes described in the positive ionization mode can be circumvented in the negative mode by a fine-tuning of the peptoid sequence, that is, by positioning the negative charge at the positive side of the helical peptoid macrodipole. N-(S)-(1-carboxy-2-phenylethyl) (Nscp) and N-(S)-phenylethyl (Nspe) were selected as the negative charge carrier and as the helix inductor, respectively. We, here, report the results of a joint theoretical and experimental study demonstrating that the structures adopted by the NspenNscp anions remain compactly folded in the gas phase for chains containing up to 10 residues, whereas no evidence of the presence of a helical structure was obtained, even if, for selected sequences and lengths, different gas phase conformations are detected.


Assuntos
Peptoides , Ânions , Espectrometria de Mobilidade Iônica , Íons , Conformação Molecular , Peptoides/química
2.
Biomacromolecules ; 22(8): 3543-3551, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34251172

RESUMO

Folding and unfolding processes are key aspects that should be mastered for the design of foldamer molecules for targeted applications. In contrast to the solution phase, in vacuo conditions represent a well-defined environment to analyze the intramolecular interactions that largely control the folding/unfolding dynamics. Ion mobility mass spectrometry coupled to theoretical modeling represents an efficient method to decipher the spatial structures of gaseous ions, including foldamers. However, charge solvation typically compacts the ion structure in the absence of strong stabilizing secondary interactions. This is the case in peptoids that are synthetic peptide regioisomers whose side chains are connected to the nitrogen atoms of the backbone instead of α-carbon as in peptides, thus implying the absence of H-bonds among the core units of the backbone. A recent work indeed reported that helical peptoids based on Nspe units formed in solution do not retain their secondary structure when transferred to the gas phase upon electrospray ionization (ESI). In this context, we demonstrate here that the helical structure of peptoids bearing (S)-N-(1-carboxy-2-phenylethyl) bulky side chains (Nscp) is largely preserved in the gas phase by the creation of a hydrogen bond network, induced by the presence of carboxylic moieties, that compensates for the charge solvation process.


Assuntos
Peptoides , Gases , Ligação de Hidrogênio , Íons , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...