Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204284

RESUMO

A hyperbaric aerodynamic levitator has been developed for containerless materials research at specimen temperatures exceeding 2000 °C and pressures up to 10.3 MPa (1500 psi). This report describes the prototype instrument design and observations of the influence of specimen size, density, pressure, and flow rate on levitation behavior. The effect of pressure on heat transfer was also assessed by studying the heating and cooling behavior of levitated Al2O3 liquids. A threefold increase in the convective heat transfer coefficient was estimated as pressure increased to 10.3 MPa. The results demonstrate that hyperbaric aerodynamic levitation is a promising technique for containerless materials research at high gas pressures.

2.
Inorg Chem ; 59(9): 5949-5957, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320222

RESUMO

The modeling of a loss-of-coolant-accident scenario involving nuclear fuels with FeCrAl cladding materials in consideration to replace a Zircaloy requires knowledge of the thermodynamics of oxidized structures. At temperatures higher than 1500 °C, oxidation of FeCrAl alloys forms (Fe,Cr,Al)3O4 spinels. In situ high-energy X-ray diffraction in a conical nozzle levitator installed at beamline 6-ID-D of the APS was used to study the structural evolution of the oxides as a function of the temperature. Single-phase (spinel) and multiphase (spinel-corundum-FeAlO3) regions are mapped as a function of the temperature for three different compositions of FeCrAl oxidation products. The thermal expansion coefficients and cation distribution in the spinel structure have been refined. The temperature at which complete melting of the fuel cladding is expected has been determined by the liquidus temperatures of the oxidized products to be between 1657 and 1834 °C in a 20% O2/Ar atmosphere using the cooling trace method. The liquidus temperature increases with increasing Al and Cr content in the spinel phase.

3.
Rev Sci Instrum ; 90(1): 015109, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709210

RESUMO

This study examines thermal gradients in ceramic oxide spheroids being aerodynamically levitated in a conical nozzle levitator (CNL) system equipped with a CO2 laser (10.6 µm wavelength). The CNL system is a versatile piece of equipment that can easily be coupled with advanced thermophysical and thermochemical measuring devices, such as diffraction/scattering (X-ray and neutron), nuclear magnetic resonance, and calorimetry, for the analysis of bulk spheroidal solids and liquids. The thermal gradients of a series of single crystal, polycrystalline solids, and liquid spheroids have been measured spatially in the CNL system, by means of a disappearing filament pyrometer (800-3000 °C) and by X-ray diffraction with reference to an internal standard (Pt: 800-1600 °C). The thermal gradient in a levitated sample being heated by a laser from the top can be minimized by: (i) maximizing the sphericity, (ii) maximizing the density, and (iii) minimizing microstructural features. A spheroid with these properties can be manufactured via machining a perfect sphere from a highly dense, chemically and phase pure pellet. These properties promote rotation of the sample about multiple axes in the air stream, enabling homogeneous heating. This homogeneous heating is the dominant factor in reducing thermal gradients in solid state samples. It was found that the thermal gradient in an ∼3 mm diameter solid sample could be reduced from 1000 °C to 30 °C, by having a perfectly spherical shape that could rotate on multiple axes in a high velocity gas stream (∼1500-2000 cm3/min). These findings will allow accurate thermophysical and thermochemical property measurements of solids in situ at high temperatures, using the CNL system.

4.
Sci Rep ; 8(1): 14962, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297693

RESUMO

Structure and thermodynamics of pure cubic ZrO2 and HfO2 were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automated ab initio molecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2 and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2 and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2 and HfO2 are similar and reach (4 ± 1)·10-5/K from experiment and (5 ± 1)·10-5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2 and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2 is an excellent oxygen conductor, perhaps even better than YSZ.

5.
Sci Rep ; 8(1): 10658, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006557

RESUMO

Pyrochlore, an ordered derivative of the defect fluorite structure, shows complex disordering behavior as a function of composition, temperature, pressure, and radiation damage. We propose a thermodynamic model to calculate the disordering enthalpies for several RE2Zr2O7 (RE = Sm, Eu, Gd) pyrochlores from experimental site distribution data obtained by in situ high temperature synchrotron X-ray diffraction. Site occupancies show a gradual increase in disorder on both cation and anion sublattices with increasing temperature and even greater disorder is achieved close to the phase transition to defect fluorite. The enthalpy associated with cation disorder depends on the radius of the rare earth ion, while the enthalpy of oxygen disordering is relatively constant for different compositions. The experimental data support trends predicted by ab initio calculations, but the obtained enthalpies of disordering are less endothermic than the predicted values. Thermal expansion coefficients are in the range (8.6-10.8) × 10-6 K-1. These new experimental determinations of defect formation energies are important for understanding the stability of pyrochlore oxides and their disordering mechanisms, which are essential in the context of their potential applications in nuclear waste management and other technologies.

6.
Nat Commun ; 6: 5964, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601270

RESUMO

The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as 'high-entropy alloys'. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that, even when the material undergoes elemental segregation, precipitation, chemical ordering and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. The results suggest that the high-entropy alloy-design strategy may be applied to a wide range of complex materials, and should not be limited to the goal of creating single-phase solid solutions.

7.
Eur Biophys J ; 41(4): 397-403, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22038123

RESUMO

Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.


Assuntos
Acústica/instrumentação , Materiais Biocompatíveis/química , Pesquisa , Anticolesterolemiantes/química , Fótons , Probucol/química , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...