Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(22): 25147-25154, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617151

RESUMO

Current developments in precision medicine require the simultaneous detection of an increasing number of biomarkers in heterogeneous, complex solutions, such as blood samples. To meet this need, immunoassays on barcoded hydrogel beads have been proposed, although the encoding and decoding of these barcodes is usually complex and/or resource-intensive. Herein, an efficient method for the fabrication of barcoded, functionalized hydrogel beads is presented. The hydrogel beads are generated using droplet-based microfluidics in combination with photochemically induced C-H insertion reactions, allowing photo-crosslinking, (bio-) functionalization, and barcode integration to be performed in a single step. The generated functionalized beads carry single-color barcodes consisting of green-fluorescent particles of different sizes and concentrations, allowing simple and simultaneous readout with a standard plate reader. As a test example, the performance of barcoded hydrogel beads (3 × 3 matrix) functionalized with capture molecules of interest (e.g., antigens) is investigated for the detection of Lyme-disease-specific antibodies in patient sera. The described barcoding strategy for hydrogel beads does not interfere with the bioanalytical process and captivates by its simplicity and versatility, making it an attractive candidate for multiplex bioanalytical processes.


Assuntos
Hidrogéis , Microfluídica , Anticorpos , Biomarcadores , Humanos , Hidrogéis/química , Imunoensaio/métodos , Microfluídica/métodos
2.
J Cell Mol Med ; 26(3): 880-892, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931449

RESUMO

The aggregation of ß-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aß42 is one of several Aß peptides, all of Aß30 to Aß43 that are produced as a result of γ-secretase-mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aß42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aß peptides, while sparing the γ-secretase-mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase-dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aß-like peptides, but that only the production of Aß-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aß modulation. Collectively, these results suggest that GSMs are selective for γ-secretase-mediated Aß production.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Mutação
3.
PLoS One ; 8(5): e63683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704930

RESUMO

Mitochondrial cristae morphology is highly variable and altered under numerous pathological conditions. The protein complexes involved are largely unknown or only insufficiently characterized. Using complexome profiling we identified apolipoprotein O (APOO) and apolipoprotein O-like protein (APOOL) as putative components of the Mitofilin/MINOS protein complex which was recently implicated in determining cristae morphology. We show that APOOL is a mitochondrial membrane protein facing the intermembrane space. It specifically binds to cardiolipin in vitro but not to the precursor lipid phosphatidylglycerol. Overexpression of APOOL led to fragmentation of mitochondria, a reduced basal oxygen consumption rate, and altered cristae morphology. Downregulation of APOOL impaired mitochondrial respiration and caused major alterations in cristae morphology. We further show that APOOL physically interacts with several subunits of the MINOS complex, namely Mitofilin, MINOS1, and SAMM50. We conclude that APOOL is a cardiolipin-binding component of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. Our findings further assign an intracellular role to a member of the apolipoprotein family in mammals.


Assuntos
Apolipoproteínas/metabolismo , Cardiolipinas/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Animais , Bovinos , Regulação para Baixo , Células HeLa , Humanos , Mitocôndrias/ultraestrutura , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Consumo de Oxigênio , Ligação Proteica
4.
Cell ; 144(4): 566-76, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335238

RESUMO

TAp63α, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63α's activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63α inhibition remains unknown. Here, we show that TAp63α is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ∼20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63α is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63α is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.


Assuntos
Oócitos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Transativadores/química , Transativadores/metabolismo , Animais , DNA/metabolismo , Dimerização , Feminino , Raios gama , Camundongos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Proteína Supressora de Tumor p53/metabolismo
5.
Exp Gerontol ; 45(7-8): 503-11, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20451598

RESUMO

Mitochondria fulfill a number of essential cellular functions and play a key role in the aging process. Reactive oxygen species (ROS) are predominantly generated in this organelle but next to inducing oxidative damage they act as signaling molecules. Autophagy is regulated by signaling ROS and is known to affect aging as well as neurodegenerative diseases. Many cellular components that influence autophagy are linked to longevity such as members of the sirtuin protein family. Recent studies further link mitochondrial dynamics to the removal of dysfunctional mitochondria by mitophagy, thereby representing a novel mechanism for the quality control of mitochondria. Here we summarize the current views on how mitochondrial function is linked to aging and we propose that quality control of mitochondria has a crucial role in counteracting the aging process.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/fisiologia , Restrição Calórica , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genoma Mitocondrial , Humanos , Insulina/metabolismo , Longevidade/fisiologia , Mitocôndrias/genética , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...